Algunos resultados que involucran operadores q-integrales fraccionales generalizados de Erdélyi-Kober

Autores/as

  • Leda Galué Universidad del Zulia

Palabras clave:

Operador q-integral fraccional generalizado de Erdélyi-Kober, desigualdades q-integrales fraccionales, q-integración fraccional por partes.

Resumen

En este trabajo se presentan algunos resultados para los operadores q-integrales fraccionales generalizados de Erdélyi-Kober definidos por Galué (2009). Además, se establecen desigualdades q-integrales fraccionales para funciones sincrónicas usando los operadores q-integrales fraccionales generalizados de Erdélyi-Kober antes mencionados. Algunos resultados dados por Belarbi y Dahmani, Öğünmez y Özkan, y Sulaiman se derivan como casos especiales de nuestros resultados.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ross, B. (Ed), Fractional Calculus and Its Applications, Lecture Notes in Math., Springer-Verlag 457, (1975).

Agarwal, R. P., Certain fractional q-integral and q-derivatives, Math. Proc. Camb. Phil. Soc., Vol. 66, (1969), 365-370.

Al-Salam, W. A., Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., Vol. 15, (1966), 135-140.

Kalia, R. N. (Ed), Recent Advances in Fractional Calculus, Global Publishing Company, U.S.A., (1993).

Galué, L., Generalized Erdélyi-Kober fractional q-integral operator, Kuwait Journal of Science and Engineering, Vol. 36 (2A), (2009), 21-34.

Galué, L., Generalized Weyl fractional q-integral operator, Algebras Groups and Geometries, Vol. 26, (2009), 163-178.

Galué, L., On composition of fractional q-integral operators involving basic hypergeometric function, Journal of Inequalities and Special Functions, Vol. 1, No. 1, (2010), 39-52.

Kalla, S. L., Galué, L. and Srivastava, H. M., Further results on an H-function generalized fractional calculus, J. Fract. Calc., Vol. 4, (1993), 89-102.

Kalla, S. L. and Kiryakova, V., An H, -function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in L p Math. Japon., Vol. 35, (1990), 1151-1171.

Kiryakova, V., Generalized Fractional Calculus and Applications, Longman (Pitman, Res. Notes in Math. Series # 301), London, U.K., (1994).

McBride, A. C. and Roach, G. F. (Eds), Fractional Calculus, Res. Notes in Math., Pitman 138, (1985).

Saigo, M., A remark on integral operators involving the Gauss hypergeometric functions, Kyushu University Mathematics Reports of the College of General Education, Vol. XI, No. 2, (1978), 135- 143.

Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, New York, (1993).

Saxena, R. K., Yadav, R. K., Purohit, S. D. and Kalla, S. L., Kober fractional q-integral operator of the basic analogue of the H-function, Rev. Téc. Ing. Univ. Zulia, Vol. 28, No. 2, (2005), 154-158.

Anastassiou, G. A., Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, (2011).

Denton, Z. and Vatsala, A. S., Monotonic iterative technique for finit system of nonlinear Riemann- Liouville fractional differential equations, Opuscula Mathematica, Vol. 31, No. 3, (2011), 327-339.

Lakshmikantham, V. and Vatsala, A. S., Theory of fractional differential inequalities and applications, Commun. Appl. Anal., Vol. 11, (2007), 395-402.

Ramírez, J. D. and Vatsala, A. S., Monotonic iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Mathematica, Vol. 29, No. 3, (2009), 289-304.

Belarbi, S. and Dahmani, Z., On some new fractional integral inequalities, Int. Journal of Math. Analysis, Vol. 4, No. 4, (2010), 185-191.

Dahmani, Z., Mechouar, O. and Brahami, S., Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., Vol. 3, No. 4, (2011), 38-44.

Dahmani, Z., Tabharit, L. and Taf, S., New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., Vol. 2, No. (3), (2010), 93-99.

Dragomir, S. S., Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., Vol. 31, No. 4, (2000), 397-415.

Kalla, S. L. and Rao, A., On Grüss type inequality for hypergeometric fractional integrals, Le Matematiche, Vol. 66, No. 1, (2011), 57-64.

Öğünmez, H. and Özkan, U. M., Fractional quantum integral inequalities, J. Inequal. Appl., Vol. 2011, Article ID 787939, 7 pp. doi:10.1155/2011/787939.

S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequal., Vol. 7, No. 2, (2013), 239-249.

Saxena, R. K., Rama, J., Daiya J. and Pogány, T. K., Inequalities associated with Cěbyšev functional for Saigo fractional integration operator, Integral Transforms and Special Functions, Vol. 22, No. 9, (2011), 671-680.

Sulaiman, W.T., Some new fractional integral inequalities, J. Math. Anal., Vol. 2, No. 2, (2011), 23- 28.

Ernst, T., A method for q-Calculus, Journal of Nonlinear Mathematical Physics, Vol. 10, No. 4, (2003), 487-525.

Gasper, G. and Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications Vol. 35, Cambridge University Press, (1990).

Rajković, P. M., Marinković, S. D. and Stanković, M. S., Fractional integrals and derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, Vol. 1, (2007), 311-323. http://pefmath. etf.bg.ac.yu.

Kac, V. and Cheung, P., Quantum Calculus, Springer-Verlag, (2002).

Annaby, M. H. and Mansour Z. S., q-Fractional Calculus and Equations, Lecture Notes in Mathematics 2056, Springer, New York, (2012).

Descargas

Publicado

2014-01-01

Número

Sección

Artículos de investigación

Cómo citar

Algunos resultados que involucran operadores q-integrales fraccionales generalizados de Erdélyi-Kober. (2014). Revista Tecnocientífica URU, 6, 77-89. https://revistas.fondoeditorial.uru.edu/index.php/tecnocientificauru/article/view/399

Artículos similares

51-60 de 184

También puede Iniciar una búsqueda de similitud avanzada para este artículo.