Factores que afectan la resistencia a la compresión de las probetas de concreto. Una revisión

Autores/as

  • Jesús Moreno Universidad del Zulia
  • Oladis Troconis Universidad del Zulia

Palabras clave:

Resistencia a la compresión, núcleo, probeta normalizada, factor de corrección

Resumen

La resistencia a la compresión del concreto es el principal parámetro utilizado para medir la calidad de este material, la cual se cuantifica por medio de ensayos a probetas cilíndricas o cúbicas elaboradas al momento del vaciado, o núcleos extraídos directamente del elemento estructural ya endurecido. El objetivo de este trabajo consiste en analizar los diferentes factores que deben ser considerados al momento de interpretar los resultados de resistencia obtenidos a partir de las probetas ensayadas (núcleos, cilindros o cubos), con la finalidad de establecer factores de corrección que permitan aminorar el efecto de dichos factores. El estudio de estos factores se realizó a partir de la revisión de distintos trabajos elaborados por investigadores del área técnico-científica, donde se encontró que los núcleos extraídos del elemento son comúnmente utilizados al momento de evaluar la resistencia “in situ” del concreto, pero son las más susceptibles al efecto de factores como la operación de perforación, el tamaño de la probeta, la relación de esbeltez y las características de los agregados. Igualmente, en este trabajo se demostró que existe una diferencia entre los núcleos extraídos y las probetas normalizadas elaboradas en sitio, para lo cual los investigadores plantean factores de corrección.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

COVENIN (337:1998), Definiciones y terminología relativas a concreto. Caracas, Venezuela.

Hincapié A. y Valencia J., Resistencia al hormigón: núcleos vs. Cilindros. Revista Universidad EAFIT, Vol. 39, No. 131, (2003), 87-95.

COVENIN (1976-2003). Concreto, Evaluación y métodos de ensayo. Caracas, Venezuela

Zacoeb A. y Ishibashi K., Point load test application for estimating compressive strength of concrete structures from small core, ARPN Journal of Engineering and Applied Sciences, Vol. 4, No. 7, (2009), 46-57.

Pul S., Husem M., Arslan M. y Zandi Y., Investigation of Relation between Core and Cylindrical Strength of Concrete Specimen Cured in Different Conditions. Recent Researches in Geography, Geology, Energy, Environment and Biomedicine, ISBN: 978-1-61804-022-0, 265-269.

Seong-Tae Y., Min-Su K., Jin-Keun K. y Jang-Ho J. K., Effect of specimen size on flexural compressive strength of reinforced concrete members. Cement & Concrete Composites, Vol. 29, (2007), 230–240.

Patnaik A. y Patnaikuni I. Correlation of strength of 75 mm diameter and 100 mm diameter cylinders for high strength concrete. Cement and Concrete Research, Vol. 32, (2002), 607–613.

Del Viso J.R. Carmona J.R. y Ruiz G., Shape and size effects on the compressive strength of highstrength concrete. Cement and Concrete Research, Vol. 38, (2008), 386–395.

Sıddık S., Hikmet D. y Varol K., Drying Effect of Normal and High Strength Concrete Cylinders with Different Sizes. G.U. Journal of Science, Vol. 22, No. 4, (2009), 333-340.

Kilinc K., Celik A., Tuncan M., Tuncan A., Arslan G. y Arioz O. Statistical distributions of in situ microcore concrete strength. Construction and Building Materials, Vol. 26, (2012), 393–403.

Seong-Tae Y., Eun-Ik Y. y Joong-Cheol C., Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, Vol. 236,(2006), 115–127.

COVENIN (338:2002)., Concreto. Método para la elaboración, curado y ensayo a compresión de cilindros de concreto. Caracas, Venezuela.

Haque M.N. y Gopalan M.K., Estimation of in situ strength of concrete. Cement and concrete research, Vol. 21, (1991), 1103-1110.

Bloem D.L., ACI Journal Vol. 65, No. 3, (1968) 176.

Bloem D.L., Proceedings ASTM 65, (1965) 668.

Murphy W.E., ACI, SP-82 (1984), 377.

Newman K., ACI, SP-82 (1984), 479.

Keiller A.P., ACI, SP-82 (1984), 441.

Munday J.G.L. and R.K. Dhir, ACI, SP-82 (1984) 393.

Malhotra V.M., ACI Journal Vol. 74, No. 4, (1977), 163.

Nikbin I., Eslami M. y Rezvani S. M., An Experimental Comparative Survey on the Interpretation of Concrete Core Strength Results. European Journal of Scientific Research ISSN 1450-216X, Vol.37, No.3 (2009), 445-456.

Uva G., Porco F., Fiore A. y Mezzina M., Proposal of a methodology for assessing the reliability of in situ concrete tests and improving the estimate of the compressive strength. Construction and Building Materials, Vol. 38, (2013), 72–83.

Metin U., Ercan Ö. y Tuncay K., Prediction of concrete compressive strength in buildings that would be reinforced by fuzzy logic. International Journal of the Physical Sciences, Vol. 7, No. 29, (2012), 5193-5201.

Khaloo Ali R., Mohamad M., y Sharam A., Size Influence of Specimens and Maximum Aggregate on Dam Concrete Compressive Strength. Journal of Materials in Civil Engineering, Vol. 21, No.8, (2009), 349-355.

Rojas L., Fernández J., y López J., Rebound Hammer, Pulse Velocity, and Core Tests in Self-Consolidating Concrete, ACI Materials Journal, Vol. 109, No. 2, (2012), 235-243.

Celik A., Kilinc K, Tuncan M., y Tuncan A., Distributions of Compressive Strength Obtained from Various Diameter Cores”. ACI Materials Journal, Vol. 109, No. 6, (2012), 597-606.

Tarun R. Naik, Variation in concrete core strength., Center for By-Products Utilization, Report No. CBU-1990-13, Department of Civil Engineering and Mechanics College of Engineering and Applied Science the University of Wisconsin – Milwaukee. (1990).

Madandoust R., Bungey J. y R. Ghavidel., Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Computational Materials Science, Vol. 51, (2012), 261–272.

ACI Committee (214:2003), Guide for Obtaining Cores and Interpreting Compressive Strength Results (ACI 214.4R-03). American Concrete Institute, Farmington Hills, MI.

Moseley S.G., Bohn K.-P. y Goedickemeier M., Core drilling in reinforced concrete using polycrystalline diamond (PCD) cutters: Wear and fracture mechanisms. Int. Journal of Refractory Metals & Hard Materials, Vol. 27, (2009), 394–402.

Tuncan M., Arioz O., Ramyar K. y Karasu B., Assessing concrete strength by means of small diameter cores. Construction and Building Materials, Vol. 22, (2008), 981–988.

Kumar R. y Bhattacharjee B., Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, Vol. 33, (2003), 155–164.

Mirza S. y Claude D., Compressive strength testing of high performance concrete cylinders using confined caps. Construction and Building Materials, Vol. 10, No. 8, (1996), 589-595.

Sura A., Effect of Specimen Size on Compressive, Modulus of Rupture and Splitting Strength of Cement Mortar, Joumal of Applied Sciences, Vol. 11, No. 3, (2011), 584-588.

McGinnis M. y Pessiki S., Influence of steel reinforcement on in-situ stress evaluation in concrete structures by the Core-drilling method. CP820, Review of Quantitative Nondestructive Evaluation, Vol. 25, (2006), 1358-1365.

Venkateswara S., Seshagiri M. y Rathish P., Effect of Size of Aggregate and Fines on Standard And High Strength Self Compacting Concrete. Journal of Applied Sciences Research, Vol. 6, No.5, (2010), 433-442.

Hosein T., Hamid R., Soleymani, y J. D., Precision of Compressive Strength Testing of Concrete with Different Cylinder Specimen Sizes. ACI Materials Journal, Vol. 107, No. 5, (2010), 461-468.

ASTM C31/C31M:2009, Standard Practice for Making and Curing Concrete Test Specimens”.ASTM International, (2009), West Conshohocken, PA.

ACI Committee 318:2008, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute, (2008), Farmington Hills, MI.

ASTM C39/C39M:2009a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International (2009), West Conshohocken, PA.

Semsi Y. y Gözde I., The effect of cylindrical specimen size on the compressive strength of concrete. Building and Environment, Vol. 42, (2007), 2417–2420.

AS1012.9:1986, Methods of Testing Concrete, Part 9: Method for the Determination of the Compressive Strength of Concrete Specimens. Standards Association of Australia, (1986), Standard House, Australia.

CSA A23.1:1998, Concrete Materials and Methods of Concrete Construction. Canadian Standards Association, Rexdale, (1998), Ontario, Canada.

ASTM C 42:1990, Test for obtaining and testing drilled cores and sawed beams of concrete. Annual Book of ASTM Standards, (1990).

BS 1881: Part 120:1983, Method for determination of the compressive strength of concrete core.

British Standards, (1983).

Japanese Industrial Standard., JIS A1107, Method of Sampling and Testing for Compressive

Strength of Drilled Cores of Concrete. (1993)

COVENIN (345:1980), Método para la extracción de probetas cilíndricas y viguetas de concreto

endurecido. Caracas, Venezuela.

CSTR 11, Concrete core testing for strength, Technical Report No.11. The Concrete Society,

(1976), London,.

TS EN 12504-1, Testing concrete in structures-part 1: cored specimens- taking, examining and

testing in compression”. Turkish Standards Institute, (2002), Ankara.

Felicetti R., The drilling resistance test for the assessment of fire damaged concrete, Cement &

Concrete Composites, Vol. 28, (2006), 321–329.

Turkel A. y Hulusi M., Size and Wall Effects on Compressive Strength of Concretes. ACI Materials Journal, Vol. 107, No. 4, (2010), 372-379.

Lessard M., Chaallal O. y Aїtcin PC., Testing high strength concrete compressive strength. ACI

Materials Journal, Vol. 90, No. 4, (1993), 303–308.

Sleiman AI, Islam MS, Issa MA, Yousif AA y Issa MA., Specimen and aggregate size effect on concrete compressive strength. Cement, Concrete and Aggregates, Vol. 22, No. 2, (2000), 103–115.

Malhotra JM., Are 4_8 inch concrete cylinders as good as 6_12 inch cylinders for quality control

of concrete. ACI Materials Journal, Vol. 73, No. 14, (1976), 333–336.

Moreno J., 225 w. wacker drive. Concrete International. Design & Construction, Vol. 12, No. 1,

(1990), 35–39.

Carrasquillo RL., Nilson AH. y Slate FO., Properties of high strength concrete subject to shortterm loads. ACI Materials Journal, Vol. 78, No. 3, (1981), 171–178.

Date CG., y Schnormeier R., Development and use of 4_8 inch concrete cylinders in Arizona.Concrete International: Design & Construction, Vol. 3, No. 7, (1981), 42–45.

Howard LN., y Leadham DM., Production and delivery of high strength concrete. Concrete International: Design & Construction, Vol. 11, No. 4, (1989), 26–30.

Carrasquillo PM., y Carrasquillo RL., Evaluation of the use of current concrete practice in the production of high strength concrete. ACI Materials Journal, Vol. 85, No. 1, (1988), 49–54.

Nasser KW. y Al-Manaseer AA., It’s time for a change from 6_12 to 3_6 inch cylinders. ACI Materials Journal, Vol. 84, No. 3, (1987), 213–216.

Bartlett M., Precision of in-place concrete strengths predicted using core strength correction factors obtained by weighted regression analysis. Structural Safety, Vol. 19, No. 4, (1997), 397-410.

Descargas

Publicado

2018-07-01

Número

Sección

Artículos de investigación

Cómo citar

Factores que afectan la resistencia a la compresión de las probetas de concreto. Una revisión. (2018). Revista Tecnocientífica URU, 15, 69-80. https://revistas.fondoeditorial.uru.edu/index.php/tecnocientificauru/article/view/morenotroconisn15a18

Artículos similares

1-10 de 170

También puede Iniciar una búsqueda de similitud avanzada para este artículo.