Una nueva clase de polinomios q-Apostol-Bernoulli de orden α

Autores/as

  • Mridula Garg University of Rajasthan
  • Subhash Alha University of Rajasthan

Palabras clave:

Polinomios q-Apostol-Bernoulli

Resumen

En este trabajo, en primer lugar se da una introducción de los números y polinomios de Bernoulli y sus q- generalizaciones. Luego se define una nueva clase de polinomios q-Apostol-Bernoulli de orden α y sus números correspondientes. Se obtienen representaciones explicitas, teorema de adición y fórmula diferenciales de esta nueva clase de polinomios.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Apostol, T.M.,On the Lerch Zeta function, Pacific J. Math., 1 (1951), 161-167.

Bretti, G, Natalini, P, Ricci, P.E., Generalizations of the Bernoulli and Appell polynomials. Abstr. Appl. Anal., 7(2004), 613-623.

Carlitz, L., q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948) 987-1000.

Cenkci, M., Can, M.,Some results on q-analogue of the Lerch zeta function, Adv. Stud. Contemp. Math., 12 (2006), 213-223.

Choi, J., Anderson, P.J., Srivastava, H.M.,Some q-extensions of the Apostol-Bernoulli and the Apos- tol–Euler polynomials of order n and the multiple Hurwitz zeta function, Appl. Math. Comput., 199 (2008), 723-737.

Erdélyi, A., Magnus, W., Oberhittenger, F, Tricomi, F. G., Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York, Toronto and London (1953).

Ernst, T., q-Bernoulli and q-Stirling polynomials, an umbral approach, Int. J. Difference Equ., 1(2006), 31-80.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, Cambridge (2004).

Goyal, S.P., Laddha, R.K.,On the generalized Riemann Zeta functions and the generalized Lambert transform, Ganita Sandesh, 11(1997), 99–108.

Kim, T., Kim, Y.-H. and Hwang, K.-W, On the q-extensions of the Bernoulli and Euler numbers re- lated identities and Lerch zeta function, Proc. Jangjeon Math. Soc., 12 (2009), 77-92.

Koblitz, N., On Carlitz’s q-Bernoulli numbers, J. Number Theory, 14 (1982), 332-339.

Kurt, B., A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials B2  x, y  , Appl. Math. Sci., 4(47) (2010), 2315-2322.

Lee, H.Y., Ryoo, C.S., A note on the generalized higher-order q-Bernoulli numbers and polynomials with weight  , Taiwanese J. Math., 17(3) (2013), 785-800.

Luo, Q. M., Guo, B. N., Qi, F., Debnath, L.,Generalizations of Bernoulli numbers and polynomials,

LInt. J. Math. Math. Sci., 59 (2003), 3769-3776. uo, Q.-M., Srivastava, H.M., q-Extensions of some relationship between the Bernoulli and Euler polynomials, Taiwanese J. Math., 15(1) (2011), 241-257.

Luo, Q.-M., Apostol-Euler polynomials of higher order and Gaussian hypergeometric functioins, Tai- wanese J. Math., 10 (2006), 917-925.

Luo, Q.-M., Some results for the q-Bernoulli polynomials and q-Euler polynomials, J. Math. Anal. Appl., 363 (2010), 7-18.

Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler Polynomials, J. Math. Anal. Appl., 308(2005), 290–302.

Mahmudov, N. I., On a class of q-Bernoulli and q-Euler polynomials. Adv. Differ. Equ., 2013:108 (2013),doi:10.1186/1687-1847-2013-108.

Natalini, P., Bernardini, A., A generalization of the Bernoulli Polynomials, J. Appl. Math., 3 (2003), 155–163.

Olver F.W.J., Lozier D.W., Boisvert, W.F., Clark, C.W.: NIST Handbook of Mathematical Functions, NIST and Cambridge University Press, New York (2010).

Ryoo, C.S., A note on q-Bernoulli numbers and polynomials, Appl. Math. Lett., 20 (2007), 524-531.

Srivastava, H. M., Garg, M., Choudhary, S.: A new Generalization of the Bernoulli and Related Poly- nomials, Russ. J. Math. Phys., 17(2) (2010), 251–261.

Srivastava, H.M., Kim, T., Simsek, Y., q-Bernoulli numbers and polynomials associated with multiple q-Zeta functions and basic L-series, Russian J. Math. Phys., 12 (2005), 201-228.

Tremblay, R, Gaboury, S, Fugère, BJ: A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pintér addition theorem. Appl. Math. Lett., 24 (2011), 1888-1893.

Tsumura, H., A note on q-analogues of the Dirichlet series and q-Bernoulli numbers, Jour. Num. Theory, 39(1991), 251-256.

Descargas

Publicado

2014-01-01

Número

Sección

Artículos de investigación

Cómo citar

Una nueva clase de polinomios q-Apostol-Bernoulli de orden α. (2014). Revista Tecnocientífica URU, 6, 67-76. https://revistas.fondoeditorial.uru.edu/index.php/tecnocientificauru/article/view/403