Desigualdades integrales fraccionales y sus q-análogos
Palabras clave:
Desigualdades integrales, operadores integrales fraccionales, operadores q-integrales fraccionales.Resumen
El objeto de este trabajo es establecer algunas desigualdades que envuelven operadores integrales de Saigo. Se usa el calculo q-fraccional para obtener varios resultados en la teoría de las desigualdades q-integrales. Los resultados dados anteriormente por Purohit y Raina (2013) y Sulaiman (2011) son casos especiales de los obtenidos en este trabajo.
Descargas
Referencias
G.A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, 2011.
Z. Denton, A.S. Vatsala, Monotonic iterative technique for finit system of nonlinear Riemann-Liouville fractional differential equations, Opuscula Mathematica, 31(3)(2011), 327-339.
S.L. Kalla and Alka Rao, On Gr u˙ ss type inequality for hypergeometric fractional integrals, Le Ma- tematiche, 66 (1)(2011), 57-64.
V. Lakshmikantham and A.S. Vatsala, Theory of fractional differential inequalities and applications, Commu. Appl. Anal., 11 (2007), 395-402.
J.D. Ramírez, A.S. Vatsala, Monotonic iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Mathematica, 29(3)(2009), 289-304.
S.D. Purohit and R.K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q -analogues, J. Math. Inequal., 7(2) (2013), 239-249.
P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2(1882), 93-98.
W.T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal., 2(2) (2011), 23-28.
M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978) 135-143.
V.S. Kiryakova, Generalized Fractional Calculus and Applications (Pitman Res. Notes Math. Ser. 301), Longman Scientific & Technical, Harlow, 1994.
R.K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral Transforms Spec. Funct., 21(7)(2010), 515-522.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
M.H. Annaby and Z.S. Mansour, q -Fractional Calculus and Equations (Lecture Notes in Mathematics 2056), Springer-Verlag Berlin Heidelberg, 2012.
H. Öğünmez, and U.M. Özkan, Fractional quantum integral inequalities, J. Inequal. Appl., Volume 2011, Article ID 787939, 7 pp.
R.P. Agarwal, Certain fractional q -integrals and q -derivatives, Proc. Camb. Phil. Soc., 66 (1969), 365-370.
W.A. Al-Salam, Some fractional q -integrals and q -derivatives, Proc. Edin. Math. Soc., 15(1966), 135-140.
M. Garg and Lata Chanchlani, q -Analogue of Saigo’s fractional calculus operators, Bull. Math. Anal. Appl., 3(4) (2011), 169-179.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2014 @copyright
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.