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Resumen

El objeto de este trabajo es presentar una solucién computacional de una generalizacion fraccional unidi-
mensional de la ecuacion de Schrodinger, relacionada a la Mecanica Cuantica. El método utiliza conjuntamente la
transformada de Sumudu y la transformada de Fourier. La solucion es obtenida en forma computacional y cerrada
en términos de la funcioén de Mittag-Leffler y la funcion H. El resultado principal obtenido aqui es general y, a partir
de éste, se pueden deducir un gran ntimero de casos especiales, hasta ahora dispersos en la literatura. Ademas, €ste
provee una extension de un resultado dado anteriormente por Debnath, Saxena y Chaurasia. El resultado principal
es presentado en forma de Teorema y se mencionan varios casos especiales.

Palabras clave: Funcion de Mittag-Leffler, Funcion-H, Transformada Sumudu, Transformada de Laplace,
Derivada de Caputo

Fractional generalization of Schrodinger equation
related to Quantum Mechanics

Abstract

The object of this article is to present the computational solution of a linear one-dimensional fractional gene-
ralization of Schrodinger equation occurring in quantum mechanics. The method followed is that of joint Sumudu
transform and Fourier transform. The solution is derived in a closed and computational form in terms of the Mittag-
Leffler function and the H-function. The main result derived here is general in nature and capable of yielding a
large number of special cases hitherto scattered in literature. It also provides an extension of a result given earlier
by Debnath, Saxena et al. and Chaurasia et al. The main result is presented in the form of a Theorem, and several
special cases are mentioned.
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1. Introduction

Fractional differential equations are the generalizations of the ordinary differential equations
to arbitrary order (real or complex). During last two decades, more interest is developed by various
research workers in formulating fractional differential equations, due to their usefulness and capability to
model and solve complex systems. In this connection, one can refer to [7, 9, 16, 17, 21, 23, 26 and 29].

Fractional Schrodinger equation is a fundamental equation of quantum mechanics. This equation
is discussed by Laskin [18, 19 and 20] in an attempt to investigate a generalization of Feynman path
integrals from Brownian —like to Lévy—like quantum mechanical paths. Earlier Feynman and Hibbs [12]
reconstructed the Schrodinger equation by making use of the path integral approach and making use of
the well —known Gaussian probability distribution.

The Schrodinger equation thus obtained contains space and time fractional derivatives. In a similar
manner, one obtains a time fractional equation if non-Marcovian evolution is considered. In a recent
paper, Naber [25] discussed certain properties of time fractional Schrodinger equation by expressing
the Schrodinger equation in terms of fractional derivatives as dimensionless objects. Time fractional
Schrodinger equations are also discussed by Debnath [6], Bhatti [3], and Debnath and Bhatti [8].

In a recent paper, the authors have investigated the solution of the following generalized linear one
dimensional fractional Schrédinger equation of a free particle of mass m, defined by

a B
d i\/ = (ih /2m) ;—ﬂN(XJ),—OO <x<o,t>0 0<a<l,f>0 (1)
X
N(x,0) = No(x), —o0 <x<o0 ()
N(x,t) >0 as |x|[—>o0, (3)

where 2 is the Caputo fractional derivative defined by ( 15) and -2 is the Liouville fractional space
o

b
derivative, defined by (21), N(x, t) is the wave function, 7 = 27rh 6.625 x 10?7 erg sec = 4.14 x 10

2! MeV sec., is the Planck constant and N (x) is an arbitrary function. The above defined Schrodinger
equation is further generalized recently by Saxena et al. [35] by employing the Hilfer fractional derivative
[16, p.113, eq. (105)], instead of the Caputo derivative, defined by (15).

Probability structure of time fractional Schrodinger equation is recently discussed by Tofight [36].
Some physical applications of fractional Schrédinger equation are investigated by Guo and Xu [13] by
deriving the solution for a free particle and infinite square potential well. This has motivated the authors
to investigate the solution of a fractional generalization of Schrédinger equation (26) in one-dimension
,occurring in quantum mechanics.

Fractional reaction- diffusion equations are treated by Haubold et al. [14], Saxena et al. [31, 32,
33] and Henry and Wearne [15].

2. Mathematical prerequisites
Sumudu transform is defined by [1]

Gw)= /™ =SHOI= [ Fne™ . wetnn) (4)
over the set of functions

A= {f3M, 11,73 > 0] F(D) < Me " T, 1 e (<1 x[0,0)) | 5)
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where G(u) is called the Sumudu transform of f{(t). It is clear that it is a linear operator. It is a slight
variant of the well-known Laplace transform. Further Sumudu transform preserves the unit and scale
properties, which makes it an ideal tool for solving several problems of physical & engineering sci-
ences without resorting to a new frequency domain. The relations connecting the Sumudu transform and
Laplace transform defined by (16 ) are given by the following Theorem:

Theorem 2.1 [1, p. 105]. Let f(r) e A with the Laplace transform F(s). Then the Sumudu trans-
form G(u) of f{(t) is given by

11
Gu)=—F(—). (6)
u u
Corollary 2.1 For, the Sumudu transform of 2! is given by
G@) = SePu) =T(puP L. (R(p) > 0,%(w) > 0) ™

Further, we also have
P

st wP = Ty - (1> 0.2 > 0) (3)

Corollary 2.2 Let f(¢) € A. Re(s)>0, and F and G are the Laplace transform and the Sumudu

transform of the function f respectively, then

F(s)= lG(l) . )
S S
Lemma 2.1
S (A- e’y 0] =1"'E} (o). (10)
5

where R(y) > 0,R(u) >0, |a)uﬂ <1, and E By (a)t'B ) 1is the generalized Mittag-Leffler function defined
by Prabhakar [28] in the form

o (), .
;F(nﬁw)(n)' ’ v

with z, B,7,0 € C,min{R (B), R(y)} > 0.

The result (10) can be easily proved by expanding the binomial function and interpreting the
result thus obtained by an appeal to the equation (8). It will be seen that this result is directly applicable
in the derivation of the solution of the fractional differential equation (26).

Note 2.1 When §=1,(11) reduces to the Mittag-Leffler function studied by Wiman [37] in the

following form
0 n

E,B,jf(z) = Z%)m, 5 (12)
n=

where 3,7,z € C,min{R(f), R(»)} >0
For 8,z € C,min{R (), R(y)} >0 y =1, (12) reduces to the Mittag-Leffler function [11, 24]:

o n

Eﬂ(z)=’§m, (13)
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where £,z e C,R(f) > 0.

Lemma 2.2

p-1
S_1 u it
u_a+77u_ﬁ+§u_7+b

_ S r - r\el r—{l,a (a=p)yr+(p-y)-1 pr+l a
- Z(_l) Z(/)f n t . o Eaja+p+(a—ﬂ)r+(ﬁ—y)( (_bt )’ (14)
=0 =0
7 P
where m(p)>o,m(u)>o,m(p+a)>o,u,(bwwr’),
u “+b
Proof: We have
uP! B uP1
—a -B 7V 4b - i -B
u T +nu T +bu M+ (u_a+b)1+§u +1u
u % +b

0 r
z) _1’ z(Z}’Jnr—f[ua+p+r(a—ﬂ)+é(ﬂ—y)—l(1 +bua)—(r+1)]
=r=0 =0

From above, it follows that

p-1
S_1 “ it
W P a vb
o0 r
_ Z(_l)r Z( Z)gfnr—é sl @+ prr(a=PB)+U(B=7)=1q 1 p,@)=(r+D).
r=0 (=0
Evaluating S ~Lon the right of above equation, with the help of Lemma 2.1, we arrive at the desired

result (14). The term by term inversion is justified in view of the result [10, §22].

The following fractional derivative of order a > 0 is introduced by Caputo [4] in the form

1 t (m) d
CDFf(t) = I S (D)dz m—1<a <m, Re(a)>0, meN . (15)
0 I'(m—ea)Jdo (t—f)OhLl_m
m
= LD G g=m (16)
dt™
m
where d—m f is the m" derivative of order m of the function f(t) with respectto t .
dt

Lemma 2.3 The Sumudu transform of Caputo derivative defined by (15) is given by

(m)
1 jt I (r)dr (17)

I'(m-a)J0 (t- T)a+1—m

S[SD,“ Va6 u} = S[



Shyam Kalla, Ram Kishore Saxena y Ravi Saxena 77
Revista Tecnocientifica URU, N° 1 Julio - Diciembre 2011 (73 - 84)

By the application of the convolution theorem of the Sumudu transform [2], the right hand side of
the equation (17) becomes
u

m m—a-1,
Tm—a) S[F™ () ulS[t sul . (18)

Applying the Sumudu transform of multiple differentiation, we have

-1
o  m—a| Gw) = f70)
s[6pf s )= [ Z}
-1
_ Gw) = /70
_ G _ , (19)
ua ’E)ua—r
where G(u) = S[f(t);u]. (20)

The above formula is useful in deriving the solution of differential and integral equations of
fractional order governing certain physical problems of reaction and diffusion. In this connection, one
can refer to the monographs written by Podlubny [29], Samko et al. [30], Kilbas et al. [17] , Mathai et
al. [ 22 ] and Diethelm [9 ].

Note 2.2 If there is no confusion, then the derivative 8 D for simplicity will be denoted by () Dta
The Liouville fractional derivative of order « is defined in [30, Section 24.2] in the form

oY _ 1 (aY"px  N@y)
o N1 L(m-a) a) J._oo(x_y)a—mﬂdy @0

where (xe R,a >0, (m=[a]+]) [«] is the integer part of « .
Note 2.3 The operator defined by (21) is also denoted by —o DY N(x,1) . Its Fourier transform is
given in [23, p.59, A.12]
Fi_ooDy fx.0 by = ~|k[* ¥(k,1), (a>0) (22)

where W(k,t) is the Fourier transform of f (x, t).

Note 2.4 Applications of fractional calculus in the solution of physical problems can be found in
the works [7, 16, 22, 26 and 29].

The H-function is defined by means of a Mellin- Barnes type integral in the following manner [22,

p-2]:
m,n _ m,n (a,;,A,,)
Hp,q (Z) - Hp,q |:Z (b, .B,) :|
. mn|_|(ay,4;),..., (ap5Ap)] 1 ¢
= H,, [Z (b B)lby By) | = EIQ O(5)zdS> (23)
where i = (-1)"?,

o) = [, v, + 8O- T —a-45)] | o

[, ra-s-8o][a1.,., M@+ 4]
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and an empty product is always interpreted as unity ; m, n,p,q € Ny with 0<n<p, 1<m<q, 4., Bj €
R+,ai,b/. € Ror C (i=1,...,p;j=l,...,q) such hat

A(b; +k)# B, (a,—-1) (k,l € Ny; i=1,...n;j=1,...m), (25)
where we employ the usual notations: N, =(0,1,2...); R=(-0,0), R, =(0,0), and C being the complex
number field.

3. Unified fractional generalization of Schrodinger equation

In this section, the solution of a linear one-dimensional fractional Schrédinger equation (26) is
investigated. The result is presented in the form of the following:

Theorem 3.1 Consider the one-dimensional fractional generalization of the Schrodinger equation
of a free particle of mass m, defined by

0DF N(x,1) +770Dtﬁ N(x,t) +&0D] N(x,1) =(2’lj_oo DIN(x, 0);
m

(26)
(0O<a<1,0<B<10<y<l)
with initial conditions
N(x, 0)=f(x), xeR, lim N(x)=0,>07EeRT, (27)

X—>+0

where ,D”,,D”,,D/ are the Caputo fractional derivatives of orders & >0, > 0,7 >0, respectively as
defined by (15), _, DY is the Liouville partial fractional derivative of order o > 0, defined by (21), N(x,
t) is the wave function,

h=27h=6.625x 1027 erg sec
=4.14x 102! MeV sec

is the Planck constant and f(x) is a prescribed function. Then under the above conditions, there holds the
following formula for the solution of (26):

I 5 © _iky X 0 r—l * - ) r+l
Nen=g 2 L G o I R e
r= =

e P D B ety (pepyn o)

—y+Ha—Pyr+i(f- 1 .y ih
+ 5% yHa—p)yr+l(p 7)E;j;y Hapyri( ﬂ_y)“l(—bt“)}dk (b=alk|® ,a_ﬂ) (28)

provided that the series and integrals in (28) are convergent.

Proof: Applying the Sumudu transform with respect to the time variable t and (14) and using the
boundary conditions, we find that

WENT () —u" Y f() e PN ()= P )+ &N ) - & f(x)

:[l]_wDQNN (o) (29)
2m
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If we apply the Fourier transform with respect to the space variable x and apply the result (22), it
yields

WONT (eu)—u L 1) + PN Gesy—ns B oy + &N k) - & £ (k)
— —a|k® N (k,u) (a= 2’1) (30)
m

sk

Solving for N~ (k,u), it gives

. -a - AT
N (k,s) = (u _a+77u _ﬁ+f§u _)f ") 31)
w P v & +b

where b=al|k|®

To invert the equation (31), it is convenient to first invert the Sumudu transform and after that the
Fourier transform. On taking the inverse Sumudu transform of the above expression with the help of the
result (14), it is found that

N (k)= 1 (k)Z( ' Z( ) v NP e

rr ) )(lew_y)Ey(la -+ IO

+ gor+a=pr+i(f- 7)E’;+;y+(a Byrr(fyyts1 )] (b:a|k|";a:%) (32)

Finally, the required solution (28) is obtained by taking the inverse Fourier transform of the
equation (32).
If we set f(x)=d(x), where §(x)is the Dirac delta function, Theorem 3.1 reduces to the following:

Corollary 3.1 Consider the linear one-dimensional fractional generalization of the Schrodinger
equation of a free particle of mass m, defined by

0DEFN(x,0)+7 ODf N(x,t)+&ED] N(x,1) :(;_hj‘w DIN(x, 1)
m

(33)
O<a<l0<f<10<y<I)
with initial conditions
N(x0)=d(x),, x€R, lim N(x,0)=0,t>0nEcR", (33)

X—>400

where ,, D/ ,ODtﬂ ,oD/ are the Caputo fractional derivatives of order & >0, >0,y > 0, respectively and
defined by (15), _, DY is the Liouville partial fractional derivative of order & > 0, defined by (21), N(x, t)
is the wave function,

h=27h=6.625x 10727 erg sec
=4.14x 1021 MeV sec

is the Planck constant and f(x) is a prescribed function. Under the above conditions, there holds the
following formula for the fundamental solution of (33):
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N, t)_ Z( ) J‘ —ikx Z( jgf r— f{t(a—ﬂ)rJr(ﬂ_}/)fE;Jr(la By }/)“1( —bt%)

+ i@ PN reD+(B=y) pr! a (BT Y s (f—pye+1 O )

¢ | h
+ gy Ha=Byr+l(f- 7)E2+ay+(a By (Byy1 O (b:a|k|0;a—2’—m) (34)

provided that the series and integrals in (34) are convergent.
Ifweset a=pf=y=0= %, then Theorem 3.1 yields the following

Corollary 3.2 Consider the linear one-dimensional fractional generalization of the Schrédinger
equation of a free particle of mass m, defined by

oDV 2N(x,0) 470D} AN (x,0) +£0DY 2N (%, 1) [ mj DY 2N 1); (33)
with initial conditions
N(x, 0)=f(x), xeR, lim N(x,)=0,>07EeRT, (36)

X—>+00
where ()Dtl/ 2 the Caputo fractional derivatives of order % , defined by (15), _ D)lc/ 2 is the Liouville
partial fractional derivative of order %deﬁned by (21), N(x, t) is the wave function,
h =275 =6.625 x 10727 ergs
=4.14x 1072 Mevs

is the Plank constant and f(x) is the prescribed function, then for the solution of (35 ), under the above
constraints ,there holds the following result:

o0 r
_(1+&+n) r[® —ikx el r—0 * r+l1 a
Neo =253 (1) [ R - bik, (37)
r=0 /=0
where b=a|k[®;a = ), h = 27h=6.625 x 1027 ergs

=4.14x 1021 Mevs

provided that the series and integrals in (37) are convergent.
The following result due to Chaurasia et al. [5] is obtained from the above theorem for & =0:
Corollary 3.3 Consider the linear one-dimensional fractional generalization of the Schrédinger

equation of a free partcle of mass m, defined by

0D N(x,1) +noDP N(x, ) ( ”fn ) o DIN(x, 0);

(33)
(0O<a<10<B<10<y<l)
with initial conditions
N(x,0)=f(x), xeR, lim N(x,)=0,>03EeRT, (39)

X—>+00
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where , Dta ,and ,oDﬂ ,are the Caputo fractional derivatives of order « >0, 8 > 0 respectively and defined
by (15), DY is the Liouville partial fractional derivative of order o > 0, defined by (21), N(x ,t) is the
wave function,

h = 27h = 6.625 x 10727 ergs
—4.14x 102! Mevs,

is the Planck constant and f(x) is a prescribed function, then under the above conditions, there holds the
following formula for the solution of (38):

X 00 P : * _ _
V= Y [ R I e O
r=0 /=0

ih
(@ PO D g g en Ok (b=alk(ia=20 (@0)

provided that the series and integrals in (40) are convergent.
In order to present the results of the next Corollary, we need the following:

Lemma 3.1 If R(«) > 0,R(u) > 0, a? > 4b, then there holds the formula

) _
gl v ra® v — [(i+a)Ea(/ita)—(,unLa)Ea(,uta)}; (41)
u +au"%+b \/(az —4b)

where A and g are the real and distinct roots of the quadratic equation x2

+ax +0=0.

The formula (41) can be established by following the technique developed by Saxena et al. [33].
We have

u +au _ 1 |A+au™ @ B (u+au™ % (42)
u +au"% +b A—p| =% _ 4 u % —p
The desired result is obtained by taking the inverse Sumudu transform of both sides of (42).

Now, if we set f(x) = d(x), £=0,0=2,ais replaced by 2 and £ by « in (28) and use the
result (41), we obtain the following result:

Corollary 3.4 Consider the linear one-dimensional linear fractional generalization of the
Schrodinger equation

2o a 2 .
07N | Nt OTNED (o en (h=ak o=t 43)
o2 o o2 2m
with the initial conditions
N(x,0)=0d(x), xeR,N,(x,0)=0, lirf N(x,t)=0,t>0, (44)
X—>T00
a 2a
where be R,b#0, 5(x) is a Dirac-delta function, where 8_ and 20 are the Caputo fractional
o t o

derivatives of order « and 2« respectively, defined by (15), N(x,t) is the wave function
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h = 27h = 6.625 x 10727 ergs
=414 x 1021 Mevs

Then, for the fundamental solution of (43) under the above constraints, there holds the following
formula:

A+ E (%)~ (A4 n)Eqg (ur“>}dk

S j +Ooexp(—iloc){(
20\ (% - 4p) "% (45)

where A and u are the real and distinct roots of the quadratic equation

N(x,t)=

v ameb=0, (46)

given by
1 1
A=+ (n? - 4b)) and u=5(—n—\/(772—4b), (47)

where b = ak 2 J(a= 21’_7‘1) , Eg(x) is the Mittag - Leffler function defined by (13) and provided that the
m
integral in (47) is convergent.

Remark 4.1 A result similar to Corollary 3.4 has been given by Orsingher and Beghin [27], for
the fractional telegraph equation.

It is interesting to observe that the Fourier transform of the solution (45) of the equation (44) can
be expressed in the form

N'(x,0) = I+ VE (At %)+ (1~ VEq (1)} (b= ak?), (43)

N | —

_n __n
V% = 4bk?) V% — 4bk?)

where A and u are defined in (47) and E (x) is the Mittag -Leffler function defined in (13).
If we set n=¢&=0, then the Theorem 3.1 gives rise to the following

Corollary 3.5 Consider the linear one-dimensional fractional generalization of the Schrodinger
equation of a free particle of mass m, defined by

0D N(x,t) :(zi—h)_ooD)’Z N(xf), 0<a<l, (49)
m
with initial conditions
Nx,0)=f(x), xeR, Ilim N(x,t)=0,t>0;, (50)
X—>=+00

where ,gDf* is the Caputo fractional derivatives of order a > 0, defined by (15), _,, DY is the Liouville
partial fractional derivative of order o > 0, defined by (21),and N(x,t) is the wave function,
h = 27h=6.625 x 1027 ergs
=4.14x 1021 Mevs

is the Planck constant and f(x) is a prescribed function. Then under the above conditions, there holds the
following formula for the solution of (48):
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1 (© * -
Nn=o= [ 0Egalk7t%)e Rk,

= [ 6e-cor"wac (51)

where the Green function G(x,t) is given by
G(x,) = J' Mg, (—al k| )k
2 ’

1 a 1
1 21 ata (1’;) (19;) (LE)

Colx| 7 (@) (LD (1,1) (1,1)
o 2

: (52)

by virtue of aresult given by Haubold et al. [14, p.686, eq.(25) Jfor evaluating the above integral; where

a= 2z_h and H 2’1(.) is the H-function defined in the equation (23).
m

33

Finally, if we further set f(x) =J(x), we obtain another result given by Saxena et al. [35].

4. Conclusion

The method of joint Sumudu transform and Fourier transform is used to solve a fractional general-
ization of the Schrodinger equation. The solution is expressed in terms of Mittag-Leffler function and the
H-function. Several known results follow as special cases of the main result established here. Although,
the Sumudu transform is close to the classical Laplace transform, it may be considered theoretical dual
to it. Having scale and unit preserving properties, the Sumudu transform may be used to solve problems
without resorting to a new frequency domain.
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