Revista Tecnocientifica URU
Universidad Rafael Urdaneta

No. 28 Enero - Junio 2025

Deposito Legal: PPI 201402ZU4464
ISSN: 2343-6360

CC BY-SA 4.0

Desarrollo de un marco de trabajo basado en componentes
para la construccion de clientes web: Slice.js

Development of a component based framework for the construction of web clients:
Slice.js

Julio A. Graterol-Bracho
Universidad Rafael Urdaneta, Facultad de Ingenieria, Escuela de Ingenieria en Computacion.
Maracaibo, Venezuela.
https://orcid.org/0009-0006-9943-7182 | Correo electronico: juliograterolb@gmail.com
Victor J. Kneider-Al Nahi
Universidad Rafael Urdaneta, Facultad de Ingenieria, Escuela de Ingenieria en Computacion.

Maracaibo, Venezuela.
https://orcid.org/0009-0004-0434-430X | Correo electronico: victorkneider@gmail.com
Jubert J. Pérez-Zabala
Universidad Rafael Urdaneta, Facultad de Ingenieria, Escuela de Ingenieria en Computacion.

Maracaibo, Venezuela.
https://orcid.org/0009-0003-8615-9927 | Correo electronico: jubert.perez.10233(@uru.edu
Recibido: 05/10/2024 Admitido: 10/01/2025 Aceptado:08/06/2025

Resumen

La presente investigacion introduce el desarrollo de un marco de trabajo (framework) basado en componentes, ofrecien-
do una arquitectura intuitiva para la construccion efectiva y organizada de clientes web. Se empled una metodologia de
investigacion descriptiva con disefio de campo no experimental, analizando el proceso de desarrollo sin intervenir las
condiciones naturales del fenomeno estudiado. Para el desarrollo del Framework se utilizé una metologia de cascada o
de fases secuenciales, siguiendo las seis fases tradicionales del desarrollo de Software: requerimientos, analisis, disefio,
implementacion, pruebas y mantenimiento. Destacando por su facilidad de implementaciéon y enfoque en la retrocompati-
bilidad, el framework proporciona una solida base de componentes desacoplados para los desarrolladores al igual que una
solida estructura de componentes y herramientas funcionales que facilitan el proceso de desarrollo de aplicaciones web.

Palabras clave: Framework, desarrollo, aplicaciones, componentes, desarrolladores.
Abstract

The present research introduces the development of a component-based framework, offering an intuitive architecture for
the effective and organized construction of web clients. A descriptive research methodology with non-experimental field
design was employed, analyzing the development process without intervening in the natural conditions of the studied
phenomenon. For the framework development, a waterfall or sequential phases methodology was used, following the six
traditional phases of software development: requirements, analysis, design, implementation, testing, and maintenance.
Highlighting its ease of implementation and focus on backward compatibility, the framework provides a solid foundation
of decoupled components for developers, along with a robust structure of components and functional tools that facilitate
the web application development process.

Key words: Framework, development, application, components, developers.

Introduccion

El desarrollo de aplicaciones web implica crear programas que pueden ser accesibles a través de
navegadores web. La complejidad de una aplicaciér914web generalmente esta relacionada con la cantidad

https://orcid.org/0009-0006-9943-7182
mailto:juliograterolb%40gmail.com?subject=
https://orcid.org/0009-0004-0434-430X
mailto:victorkneider%40gmail.com%20?subject=
https://orcid.org/0009-0003-8615-9927
mailto:jubert.perez.10233%40uru.edu?subject=

95 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

de funcionalidades que tiene y el tiempo y esfuerzo necesarios para desarrollarla. Con el tiempo, los
desarrolladores web han identificado ciertas funcionalidades comunes que se repiten en muchas aplicaciones.
Para evitar tener que escribir el mismo c6digo una y otra vez, comenzaron a crear herramientas y bibliotecas
de codigo que pueden ser reutilizadas en diferentes proyectos. Estas herramientas y bibliotecas a menudo se
agrupan en lo que se conoce como frameworks web.

Los frameworks web son conjuntos de herramientas y bibliotecas predefinidas que facilitan el
desarrollo de aplicaciones web al proporcionar estructuras y patrones de disefio comunes. Esto permite a
los desarrolladores construir aplicaciones de manera mas eficiente y rapida, ya que no tienen que empezar
desde cero cada vez. Sin embargo, existen algunos desafios con los frameworks web existentes. Uno de
los problemas principales es la inestabilidad y la dependencia de estos frameworks. Los frameworks web a
menudo se actualizan con frecuencia, lo que puede llevar a que los proyectos existentes se vuelvan obsoletos
si no se actualizan. Ademas, las actualizaciones pueden introducir cambios que requieren modificaciones en
el codigo existente, lo que puede ser costoso en términos de tiempo y recursos. Ademas, algunos frameworks
web pueden cambiar a modelos de pago, lo que podria limitar el acceso de los desarrolladores a herramientas
y recursos esenciales.

Como antecedente, la investigacion de Marmol y Pérez [1] titulado: “Desarrollo de un marco de
trabajo con node. js basado en componentes para el manejo de solicitudes a objetos de negocios embebidos
en el backend”, desarroll6 una interfaz tinica y sencilla para el acceso y ejecucion de 16gica pertenecientes a
objetos de negocios, a través de un unico endpoint web.

Por su parte, Bjéremo y Trnin¢ [2] en su trabajo sobre: “Evaluacion de bases de aplicaciones web con
respecto al desarrollo rapido”, realizaron una investigacion acerca de los diferentes frameworks web utilizados
en la época, generando una robusta documentacion de las comparaciones realizadas entre los mismos, tomando
en cuenta la dificultad de la curva de aprendizaje y la dificultad de la aplicacion web de cada uno de ellos.

Para abordar los problemas anteriormente mencionados, se propone el desarrollo de un framework
web propio basado en componentes. Este enfoque tiene como objetivo proporcionar a los desarrolladores una
herramienta robusta y confiable para construir aplicaciones web, mientras se asegura la estabilidad y el control
directo sobre el proceso de desarrollo. Al tener un framework propio, los desarrolladores pueden tener mas
control sobre las actualizaciones y no sujetos a los cambios y restricciones de los frameworks externos.

Fundamentos Tedricos

HTML: El lenguaje de Marcado de Hipertexto o Hypertext Markup Language es el bloque de
construccion mas basico de la Web. Define el significado y la estructura del contenido de una pagina web.
"Hipertexto" se refiere a los enlaces que conectan las paginas web entre si, ya sea dentro de un mismo sitio
web o entre sitios web diferentes. El bloque de construccion definido por HTML son los elementos, los cuales
describen o definen diferentes partes del contenido, como texto, imagenes, enlaces, listas, etc. Estos elementos
estan delineados por etiquetas, que indican donde comienza y donde termina un elemento en el codigo HTML.

CSS: CSS (Cascading Style Sheets) es un lenguaje de hojas de estilo utilizado para describir la
presentacion y el formato de un documento HTML o XML. Proporciona un conjunto de reglas y propiedades
que permiten controlar la apariencia visual de los elementos en una pagina web, incluyendo el disefio, colores,
fuentes, margenes y otros aspectos visuales.

Javascript: JavaScript (JS) es un lenguaje de programacion ligero interpretado (o compilado en tiempo
real) con funciones de primera clase. JavaScript es un lenguaje basado en prototipos, multiparadigma, de un
solo hilo, y dindmico, que admite estilos de programacion orientados a objetos, imperativos y declarativos (por
ejemplo, programacion funcional) (Mozilla Foundation). Las normas por las que se rige son Especificacion del
Lenguaje ECMAScript (ECMA-262) y la especificacion internacional API ECMAScript (ECMA-402).

Web Components API: Los web components son un conjunto de APIs (Interfaces de Programacion de
Aplicaciones) de la plataforma web que te permiten crear nuevas etiquetas HTML personalizadas, reutilizables

96 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

y encapsuladas para utilizar en paginas web y aplicaciones web. Los componentes y widgets personalizados,
construidos seglin los estandares de los Componentes Web, funcionaran en navegadores modernos y pueden
ser utilizados con cualquier biblioteca o marco de JavaScript que trabaje con HTML.

Metodologia

Se realizd una investigacion de tipo descriptiva, donde se detalld el proceso de desarrollo de un
framework web, desde la determinacién de las caracteristicas, hasta la construccion del mismo. Este enfoque
implico un analisis detallado, el cual no busco exclusivamente identificar los problemas, sino también busca
comprenderlos para la solucion propuesta. El disefio de la investigacion se bas6 en un enfoque de campo o no
experimental, donde no se intervienen ni alteran las condiciones en las que existe el fenémeno estudiado [3], en
su lugar, se centra en la recoleccion de datos de la realidad del desarrollo de aplicaciones web y la experiencia
de los desarrolladores. La presente utiliza al propio framework en desarrollo como unidad de investigacion,
para una comprension detallada de cada etapa del proceso de desarrollo, evaluando asi, en tiempo real, la
eficiencia y el rendimiento del Framework mediante pruebas especificas.

Enrelacion con las fases de desarrollo, se adopt6é un enfoque metodolégico conocido como “metodologia
de la cascada”, el cual se caracterizo por su estructura lineal y secuencial, donde las distintas fases del proceso
se suceden de manera ordenada y cada una de ellas debe ser completada antes de avanzar a la siguiente.
Esto proporciond una planificacion exhaustiva desde las etapas iniciales del proyecto, estableciendo objetivos
claros y recopilando detalladamente los requisitos. La metodologia de la cascada ofreci6 una previsibilidad en
el proceso, facilitando la gestion y la evaluacion progresiva del avance del proyecto.

Fases de desarrollo

Durante esta fase, se investigd activamente acerca de las funcionalidades que el framework debe
ofrecer, asi como los requisitos técnicos y operativos que deben cumplirse para garantizar su eficacia y
funcionalidad. Esto implico explorar las necesidades y expectativas de los usuarios, asi como las demandas
del entorno tecnologico en constante evolucion.

Resultados

Fase 1. Requerimientos:

Tabla 1. Requerimientos funcionales

Proporcionar un conjunto completo de componentes web reutilizables.

Permitir la facil personalizacion y extension de los componentes.

Ser compatible con los estandares web modernos (HTMLS, CSS3, JavaScript ES6, etc.).

Ofrecer una experiencia de usuario consistente y atractiva en diferentes navegadores y dispositivos.

Admitir la creacion de interfaces de usuario responsivas y adaptables.

Proporcionar un mecanismo a los usuarios de creacion de componentes propios para ser utilizados
con el Framework.

Tabla 2. Requerimientos no funcionales

Manejar un rendimiento 6ptimo, minimizando los tiempos de carga y respuesta.

Seguir principios de c6digo modular para facilitar la mantenibilidad y la escalabilidad del framework.

Ser facil de aprender y utilizar para desarrolladores web de diferentes niveles de experiencia.

Mantener la compatibilidad hacia atras con versiones anteriores del framework
para garantizar una transicion suave para los usuarios que actualizan desde versiones anteriores.

Mantener una documentacion completa y actualizada que refleje con precision las caracteristicas, APT y
mejores practicas del framework, para facilitar su adopcion y uso por parte de los desarrolladores.

97 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Fase 2. Analisis:

Durante esta etapa, se llevo a cabo un examen minucioso de los requerimientos identificados en la fase
previa, con el objetivo de comprender a fondo las expectativas de los usuarios y las limitaciones del sistema.
Se analizaron las funcionalidades esenciales que el framework debe ofrecer, asi como los requisitos técnicos,
operativos y de rendimiento que deben cumplirse para garantizar su eficacia y funcionalidad.

El framework desarrollado se bas6 en una estructura modular fundamentada en componentes,
lo que ofrecié una base solida para la construccion de clientes web. Esta arquitectura modular permitio a
los desarrolladores dividir la funcionalidad del framework en componentes independientes y reutilizables,
facilitando su mantenimiento y extension.

De manera similar, los clientes web se construyeron siguiendo el mismo enfoque basado en
componentes, lo que implicd la creacion de interfaces de usuario y funcionalidades de aplicacion mediante la
combinacion y configuracion de componentes predefinidos. Este proceso agilizé el desarrollo y promovio la
reutilizacion de codigo.

Para lograr la separacion de componentes en el codigo JavaScript, se utilizaron modulos de JavaScript,
los cuales permitieron dividir el codigo en archivos separados con funcionalidades especificas, mejorando
la organizacion y la modularidad del codigo. Ademas, se integré una clase principal al framework para
centralizar la l6gica y el funcionamiento de todos los componentes. Esta clase actué como un punto central,
permitiendo que los componentes consumieran funcionalidades entre si mediante su instancia. Se le asigno el
nombre "Slice" para distinguirla y facilitar la conexion entre los diferentes componentes.

En cuanto a la clasificacion de los componentes, se dividieron en tres categorias principales: visuales,
estructurales y servicios. Los componentes visuales fueron fundamentales para la construccion de interfaces
de clientes web; mientras que, los estructurales proporcionaron la infraestructura necesaria para gestionar y
supervisar todos los aspectos del framework y la aplicacion.

Por otro lado, los servicios encapsularon la 16gica de negocio de la aplicacion y ofrecieron la capacidad
de gestionar tecnologias asociadas con el cliente web, como solicitudes HTTP y almacenamiento local.
Ademas, se incluyeron componentes visuales y servicios de usuario, que fueron creados por los desarrolladores
para proyectos especificos utilizando el framework.

Fase 3. Diseio:

Para iniciar la fase de disefo, siguiendo con la clasificacion realizada en la Fase de Anaélisis de los
componentes segun su categoria y funcionalidad, se encontrd con:

Visuales (Visual): Estos componentes desempefian un papel fundamental en la construccion de
las interfaces de los clientes web. Se basan en etiquetas personalizadas de HTML y hacen uso de la Web
Components API. Al combinar estas etiquetas con clases de JavaScript, se logra encapsular la ldgica necesaria
para manipular estos componentes de manera eficiente, permitiendo al desarrollador abarcar una amplia gama
de funcionalidades segun sus necesidades, desde simples cambios de estilo, como el color de la fuente, hasta la
creacion dinamica de nuevos componentes.

Ademas, estos componentes pueden interactuar con el backend a través de solicitudes HTTP, lo que
les permite realizar operaciones como recuperar datos, enviar formularios o actualizar la interfaz de usuario
en respuesta a eventos especificos.

Estructurales o De estructura (Structural): Estos componentes son esenciales para el funcionamiento
integral del framework, ya que proporcionan la infraestructura necesaria para gestionar y supervisar todos los
aspectos del mismo y de la aplicacién a desarrollar. Dentro de esta categoria, se encuentran los componentes
encargados del control de las instancias de los elementos, permitiendo un manejo eficiente y dinamico de
los mismos. Ademas, ofrecen herramientas para el registro y seguimiento de actividades en tiempo real, lo

98 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

que facilita la depuracion de errores y el analisis de rendimiento durante el desarrollo y la ejecucion de la
aplicacion.

Por otro lado, los componentes estructurales también incluyen funcionalidades para la visualizacion y
manipulacion de propiedades de los elementos de la aplicacion. Esto permite a los desarrolladores inspeccionar
y ajustar el estado de los componentes segun sea necesario, lo que resulta fundamental para la personalizacion
y optimizacién de la aplicacion. En conjunto, estos componentes proporcionan una base sélida y versatil para
la construccion de aplicaciones robustas y eficientes, garantizando un control completo sobre la infraestructura
del framework y la aplicacion resultante.

Cabe resaltar que, aunque su categoria no es visual, algunos de estos componentes también utilizan
la tecnologia de la Web Components API para brindar a los desarrolladores interfaces graficas que facilitan el
proceso de desarrollo y de pruebas de la aplicacion. Los componentes de categoria estructural no pueden ser
instanciados a través del método build de la instancia principal.

Las tecnologias de componentes web o Web Components API permiten crear sus propios elementos
HTML. Son un conjunto de tecnologias complementarias para encapsular HTML, javascript y estilos en
paquetes reutilizables, con soporte nativo disponible en el navegador [4].

Servicios (Service): Los servicios constituyen un tipo fundamental de componente que desempeia
un papel clave en el desarrollo de aplicaciones web. Su principal funcién radica en encapsular la 16gica de
negocio de la aplicacion, lo que facilita la reutilizacion del codigo y mejora la legibilidad y efectividad del
proceso de desarrollo.

Ademas de abordar la logica especifica de la aplicacion, los servicios ofrecen la capacidad de
encapsular y gestionar diversas tecnologias asociadas con el cliente web, como el manejo de solicitudes HTTP,
el almacenamiento local (localStorage), y el acceso y modificacion de bases de datos indexadas (indexedDB),
entre otros.

A pesar de no hacer uso directo de la Web Components API, los servicios juegan un papel crucial al
permitir la creacion dinamica de componentes visuales que si la utilizan, asi como la modificacion dinamica
del documento en funcion de los métodos de estos servicios. Esto proporciona una flexibilidad adicional en el
desarrollo de la interfaz de usuario y la manipulacion dindmica del DOM, lo que contribuye significativamente
a la versatilidad y capacidad de respuesta de la aplicacion web resultante.

Visuales de Usuario (UserVisual): Cuentan con las mismas caracteristicas que los componentes de
categoria “Visual”, pero difieren con estos en que estos son creados por los desarrolladores para sus proyectos
especificos mientras que, los de categoria “Visual” son creados por los desarrolladores del Framework.

Servicios de Usuario (UserService): Al igual que los componentes visuales de usuario, poseen
la caracteristica de que son creados por los desarrolladores para sus proyectos especificos utilizando el
Framework y cuentan con las mismas caracteristicas que los componentes de categoria “Service” o servicios.

Seguidamente, se realiz6é un diagrama de los componentes estructurales que constituyen la base sobre
la que trabaja el framework (Figura 1), junto con un archivo de configuracion que controla el comportamiento
de estos componentes. La instancia principal del framework, llamada "Slice", estuvo compuesta por instancias
de los diferentes componentes estructurales, permitiendo el acceso a través de esta instancia.

Sin embargo, se considerdé necesario que el servicio “Translator” fuera afiadido en los diagramas
que componen la estructura del framework, dado que la habilitacion del mismo se puede realizar desde
la configuracion del framework para brindar soporte a paginas multilenguajes y asi evitar crear multiples
instancias del mismo.

99 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

messages json

Translator
components js

Controller
. v v
sliceStyles.css

I-_LI Slice
tl StylesManager y Y-)
| A
ThemeManager
Logger
Debugger

sliceConfig json

Figura 1. Diagrama de componentes del modelado

Se definié un archivo de configuracion llamado “sliceConfig”, que permitio a los desarrolladores
manejar el comportamiento del framework habilitando o deshabilitando funcionalidades de los diferentes
componentes. Por ejemplo, los componentes de depuracion como “Logger” o “Debugger” pueden ser
necesarios durante la construccion de una aplicacion, pero no durante el lanzamiento.

En este archivo se permiti6 a los mismos, utilizar la ruta de su preferencia, aunque la iniciacion del
proyecto del framework siguié una organizacion de ruta funcional sugerida por los autores desarrolladores del
framework (Figura 2).

J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Controller

Components
(Visual, Services)

componentCategories (Map)
templates (Map)

classes (Map)
requestedSiyles (Set)

activeComponents (Map)

idCounter (Number)

B

sliceStyles css cliceConfig json

components js

Debugger

registerComponent()
getComponent()
loadTemplateToComponent()
getComponentCategory()
setComponentProps()

destroyComponent()

toggleClick (String)
toggle (String)
selectedComponentSliceld (String)

isActive (Boolean)

StylesManager

Slice

componentStyles (=style=)

themaManager (ThemeManager)

logger (Logger)

controller (Controller)

init()
appendComponentStyles()

registerComponentStyles()

translator (Translator)

J’_I

debugger (Debugger)
paths (JSON)

enableDebugMode()
attachDebugMode()
makeDraggable()
handleDebugClick()
gefProperties\With Values()
showComponentDetails()
applyChanges()

hide()

stylesManagger (StylesManager)

Logger

getClass()

build()

ThemeManager

sefTheme()

themeStyles (Map)
currentTheme (String)
currentTheme (String)

themeStyle (<style=)

attachTemplate()

logs (Array)
legEnabled (Boolean)
showLogsConfig (JSON)

logEnabled (Boolean)

L

applyTheme()
removeCurrentTheme()

loadThemeCSS()

sefThemeSiyle()

Translator

messages (JSON)

currentLanguage (String)

createLog()

showLog()

logError()

loglinfol)

logWarning()

clearLogs()

getLogsByLogType()
geflLogsByCompenentCategory()
getlogsByComponent()

changelLanguage()
setPropertiesForComponents()

attachTemplate()

Log

logType (Siring)
componentCategory (String)
componentSliceld (String)
message (String)

error (String)

timestamp (Date)

Figura 2. Diagrama de clases

Fase 4. Implementacion:

Para comenzar la fase de construccion del framework basado en componentes, es esencial abordar
la definicion de la estructura y organizacion de archivos. Esta etapa fue fundamental para establecer los
cimientos de un proyecto coherente y sostenible, garantizando que el coédigo fuera legible y comprensible para

101 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

todos los desarrolladores involucrados. Una estructura de archivos bien definida es crucial para la eficacia y la
longevidad a lo largo del tiempo de un proyecto del framework (Figura 3).

Figura 3. Arquitectura de carpetas del Framework.

Como se muestra en la figura anterior, la arquitectura de carpetas disefiada para el framework basado
en componentes, denominado Slice, se organizé de manera jerarquica ascendente, donde la carpeta principal
fue denominada “Slice”, la cual contiene todos los archivos correspondientes a la construccion del framework,
esta carpeta en si misma, esta compuesta por el archivo de configuracion del framework “sliceConfig.json”, el

102 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

archivo “Slice.js” de la instancia principal del framework, y una subcarpeta denominada “Components”. En
dicha carpeta, la carpeta donde residen todos los archivos relacionados con los componentes del framework,
organizé subcarpetas para cada categoria de componentes registrada en el framework, como Visual, Structural
y Service. Ademas, contuvo el archivo "components.js" que listdo todos los componentes disponibles en el
framework.

En la carpeta “Visual” se encontrd la carpeta de cada componente de esta categoria. Cada una de las
carpetas de los componentes contuvo tres archivos esenciales para la creacion del componente: un archivo
“js” para el codigo JavaScript, un archivo “.html” para el template HTML y un archivo “.css” para los estilos
asociados.

En la carpeta “Service” cada carpeta de componente tuvo un archivo “js” que defini6 la logica del
servicio correspondiente.

En la carpeta “Structural”, la ultima categoria de componentes, se encontraron las carpetas para
cada componente de la categoria Structural, que contuvieron los archivos vinculados a esos componentes.
Los componentes de tipo Structural tuvieron al menos un archivo "js", pero también pueden tener archivos
"html" y ".css" en caso de tener una interfaz grafica. Los componentes de esta categoria que no pueden ser
instanciados mediante el método "build" se almacenaron juntos para una mejor organizacion.

En la carpeta “Styles” se almacenaron los estilos relacionados con el framework. Incluy6 el archivo
esencial “sliceStyles.css” que configur6é aspectos fundamentales de los estilos de los componentes, como
tipografias y grosores de bordes.

Segun Meyer [5], CSS permite separar la estructura del contenido de un documento web de su
presentacion visual, lo que facilita la creacion y el mantenimiento de sitios web. Esta tecnologia es la que
permiti6é manejar los estilos mencionados previamente.

Por ultimo, en la carpeta “Themes” se guardaron los archivos correspondientes a los temas visuales
utilizados en el desarrollo del framework. Cada tema se representé mediante un archivo ".css". Ademas de los
temas predefinidos como "Light" (Claro), "Dark" (Oscuro) y "Slice" (estilos por defecto del framework), los
desarrolladores pueden agregar temas personalizados segtin las necesidades del proyecto.

Figura 4. Arquitectura de la carpeta “src”.

La carpeta “src” se encontré en la raiz del proyecto, junto con la carpeta principal “Slice”. Su
propdsito fue contener los archivos necesarios para la construccion de las aplicaciones web. Dentro de “src”, se
encontraron las carpetas “App” y “Components”.

103 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

La carpeta “App” contuvo todos los archivos relacionados con las diferentes vistas de una aplicacion
web. Para cada vista, hubo una carpeta con su nombre correspondiente, que contuvo los archivos necesarios
para construir la estructura del documento y los diferentes componentes utilizados con el framework. Estos
archivos incluyeron “index.html” para la estructura HTML de la vista, “index.js” como médulo de JavaScript
para la importacion e implementacion del framework, “style.css” para los estilos especificos de esa vista, asi
como imagenes u otros recursos necesarios.

Por ultimo, en la carpeta “Components” se encontraron los componentes que fueron creados
exclusivamente por los desarrolladores. Se organizo6 en una carpeta "Visual" para los componentes de categoria
"UserVisual" y una carpeta "Service" para los componentes de categoria "UserService". Esto permit6é una
separacion clara entre los componentes proporcionados por el framework y los desarrollados por los usuarios
para sus proyectos especificos.

A continuacion, se presenta el cddigo de la instancia principal del Framework “Slice.js” (Figura 5):

Figura 5. Método constructor de la clase Slice

Como se menciond anteriormente, el framework fue disefiado siguiendo un paradigma basado en
componentes. En esta linea, los primeros elementos que se encontraron fueron las importaciones necesarias
para vincular los componentes estructurales que forman parte esencial de la instancia principal del framework.
Estos componentes incluyeron el Logger, Controller, StylesManager, y el archivo de configuracion “sliceConfig.
json” A su vez, dentro del constructor de la clase se crearon las instancias de los mismos y se asignaron a las
propiedades de la instancia principal para poder ser accedidas por todos los componentes del Framework,
junto con la configuracion de rutas definida en el archivo de configuracion.

Figura 6. Método getClass de la clase Slice

El método getClass de la instancia principal es fundamental en el proceso de solicitud o importacion
dinamica de los mddulos JavaScript de los componentes (Figura 6). Utilizo la reflexion para importar mddulos
segin la demanda del desarrollador en tiempo de ejecucion, lo que permitié una flexibilidad excepcional
adaptada a las necesidades especificas del framework. Esta caracteristica fue esencial para cargar componentes

104 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

de forma dinamica y eficiente, garantizando que solo se importaran los modulos necesarios en el momento
preciso, sin cargar innecesariamente recursos durante la compilacion.

Figura 7. Método build de la clase Slice

Como se menciond anteriormente, el método build de la instancia principal es fundamental para
ensamblar los componentes, marcando el inicio de su ciclo de vida (Figura 7). Inicialmente, se llevo a cabo
una verificacion del parametro "componentName", que contuvo el nombre del componente a instanciar. Se
verificaron diferentes condiciones, entre éstas la existencia de este parametro, su tipo de dato (debe ser un
string), y se confirmo que estuviera listado en el archivo de componentes "components.js". Ademas, se asegur6d
de que el componente no fuese de naturaleza estructural, ya que estos no pueden ser instanciados desde el
método build. En caso de no cumplir con estas condiciones de validacion, el método retorno null para el
componente que se estuvo tratando de construir (Figura 8).

105 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Figura 8. Mapeo de Ruta y solicitud de template HTML de componente en el método “build”

Seguidamente, se cred la variable componentBasePath la cual permitiéo obtener la ruta base de la
carpeta, es decir, ayudd a identificar si el componente a instanciar fue creado por los desarrolladores del
framework o si fue un componente de usuario. En caso de ser un componente de usuario, asigno el valor de la
variable a la ruta especificada para los componentes de usuario en el archivo de configuracion “sliceConfig.
json” y elimino el prefijo “User” para que el ciclo de construccion de un componente continuara su flujo con
normalidad.

Posteriormente, se cre6 la variable “modulePath” la cual almacend la ruta javascript del modulo a
instanciar, dicha ruta es la que es enviada al método getClass. En caso que el mapa de templates HTML que
forma parte del componente controller no posea la template HTML para dicho componente, y que la categoria
del componente a instanciar sea Visual, se procedio a solicitar dicha template al servidor a través del método
fetchText del componente Controller. En la misma linea, se cred un elemento html “template” y se almaceno
la template del componente dentro del mismo, para ser almacenado dentro del mapa templates previamente
mencionado.

Figura 9. Solicitud de médulo de componente en el método “build”

106 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

A continuacion, se verifico si el mapa de clases del componente controller contuvo la clase del
componente que se desea instanciar. En caso de que la clase no esté almacenada, se importé dinamicamente
utilizando el método mencionado anteriormente, "getClass" (Figura 9).

Figura 10. Solicitud de estilos de componente en el método “build”

Seguidamente, se verifico si la categoria del componente a instanciar era visual y si el Set de estilos
del componente “requestedStyles” controller no contenia almacenados los estilos para el componente a
instanciar. En caso que se cumplieran dichas condiciones, se solicitaron los estilos al servidor utilizando el
método fetchText del componente controller y se procedid al registro de los mismos utilizando el método
“registerComponentStyles” del componente StylesManager (Figura 10).

Figura 11. Creacion de la instancia

107 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Después de solicitar todos los recursos necesarios para construir el componente, como se mencion6
anteriormente, se procedio a eliminar los identificadores para luego asignarlos nuevamente. A continuacion, se
obtuvo la clase del componente y se creo la instancia utilizando reflection de manera satisfactoria. Luego, se
realizaron validaciones para asignar los identificadores y registrar la instancia en el contexto de componentes
del framework, especificamente en el mapa "activeComponents" del componente Controller (Figura 11).

Se procedié con una verificacion para determinar si el componente Debugger estaba activo. En caso
afirmativo, y si la categoria del componente instanciado fue "Visual", se ejecuto el método "attachDebugMode"
del componente Debugger en dicha instancia. Para completar la construccion del componente, se ejecutd el
método "init" de la instancia, si estaba disponible, y se devolvio al desarrollador de manera satisfactoria.

Figura 12. Métodos “setTheme” y “AttachTemplate”.

Los métodos setTheme y AttachTemplate funcionan como atajos para la ejecucion de métodos de
otros componentes facilitando la escritura de codigo (Figura 12).

Con la finalidad de brindar una interfaz mas amigable para la inicializacién de proyectos, creacion,
modificacion y eliminacion de componentes, se cred la herramienta “slicejs-cli”. Esta consistio en un paquete de
npm que al instalarlo, permiti6 a través de comandos, facilitar las labores de los desarrolladores en su proceso
de construccion de clientes web y a su vez, también facilitaron la creacion de diferentes archivos propios del
framework al igual que de brindar una estructura de proyecto estandarizada para todos los desarrolladores.

Para instalar dicha herramienta fue necesario tener instalado el manejador de paquetes de node.js
“npm” y ejecutar dentro de una instancia de terminal el siguiente comando “npm install slicejs-cli”. Posterior a
la instalacion del paquete, se agregaron al archivo “package.json” del proyecto, los atajos de los comandos que
utiliza el paquete “slicejs-cli”. En caso de que no existiera el archivo “package.json” del proyecto donde se tratd
de inicializar el proyecto de Slice, la herramienta se encarg6 de crear uno que también tuviera los comandos
que brinda la herramienta de consola. A continuacion, se presenta la Tabla 3 que contiene la descripcion de
cada comando junto a su utilizacion:

Tabla 3. Comandos de “slice-cli”

Comando Descripcion Utilizacién
. Inicializa el proyecto, crea la estructura S
it . . p npm run slice:init
de archivos para un proyecto estandar de Slice
Crea los archivos pertinentes para un componente npm run slice:create ComponentName — -
create , h . . p . .
segun su categoria (plantilla de componente incluida) | category <category> - properties <properties>
Modifica el codigo de un componente anadiendo npm run slice:modify ComponentName — -add
update i . . . !
o eliminando propiedades de su contenido. <properties> -remove properties>
delete Elimina los archivos respectivos de un componente. npm run slice:delete ComponentName - -
category <category> - properties <properties>
. Lista los componentes creados el
list . . npm run slice:list
en el archivo components.js

108 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Los componentes creados por el Cli se encontraron en la carpeta src/App/Components y contaron con
las categorias de UserVisual y UserService.

Fase 5. Pruebas:

Como prueba de estrés, se realizo la solicitud de componentes al framework en grandes cantidades,
para ser mas especificos la construccion de 10 mil componentes Checkbox. Esta prueba fue cumplida
satisfactoriamente por el framework, como prueba se tuvieron las siguientes imagenes (Figuras 13, 14 y 15)
donde se observaron los registros de creacion del componente Logger del framework y el document (DOM).

Figura 13. Registros del componente “Logger” tras la prueba de estrés.

Figura 14. Creacion masiva de componentes para la prueba de estrés.

Figura 15. Cédigo utilizado para la creacién masiva de componentes para la prueba de estrés.

Seguidamente, se realizo la prueba de integracion al framework la cual se llevo a cabo entre el
componente visual denominado "Card" y el componente de servicio "Translator". Para este proposito,
se construyd un componente "Button", al cual se le asigno la funcionalidad de cambiar entre los distintos
lenguajes registrados en el archivo de mensajes "messages.json" durante el evento "onClick" (Figura 16).
Esta funcionalidad se implementé mediante la validacion del lenguaje actual definido por el componente
"Translator". Es importante mencionar que el componente "Translator" fue previamente habilitado desde el
archivo de configuracion del framework "sliceConfig.json".

109 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Figura 16. Cédigo de la creacion de un componente “Button” para el uso del componente “Translator”.

Posteriormente, se realizo la creacion de tres componentes “Card” con diferentes propiedades y
tematicas como se observa en la figura 17:

Figura 17. Cédigo de la creacion de tres componentes “Card” para la prueba de integracién.

La figura anterior mostré los componentes creados junto con sus propiedades en el idioma "Espaiiol".
Se eligio deliberadamente utilizar el idioma en el titulo para una mayor claridad. Luego, al hacer clic en
el componente Button previamente creado, se activo la funcion asociada al evento onClickCallback del
componente. Dado que el idioma actualmente asignado era "es" (abreviatura de espafiol), se procedid a
ejecutar el método Changelanguage del componente Translator con el idioma "en" (abreviatura de inglés), lo
que provoco un cambio automatico en los mensajes mostrados en las Cards con tan solo un clic en el botén.

110 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

De esta manera, se confirmoé que los componentes del framework permitieron una integracion fluida de sus
funcionalidades, lo que indicé que las pruebas de integracion fueron exitosas (Figuras 18 y 19).

Figura 18. Componentes “Card” y “Button” creados para la prueba de integracion.

Figura 19. Componentes “Card” y “Button” tras el uso del componente “Translator”.

Fase 6. Mantenimiento y Actualizacion

Una de las caracteristicas del framework “Slice.js” es que mantuvo retrocompatibilidad entre versiones
de manera que, en cada actualizacion se mantuviera la funcionalidad principal del framework constante y no
tuvieran que realizarse actualizaciones de codigo forzosas y a ultimo momento por parte de los desarrolladores
de aplicaciones, durante cada actualizacion del framework.

Se cred una pagina web dedicada especificamente a mostrar la documentacion del framework
desarrollado, denominado “Slice” a través de un repositorio en GitHub que contuvo todo el codigo fuente y
los archivos necesarios para la pagina web de la documentacion del framework “Slice.js". Esta pagina web
sirvi6 como un punto centralizado donde los usuarios pueden acceder a toda la informacion relevante sobre el
framework, incluyendo detalles técnicos, ejemplos de uso, guias de integracion y cualquier otra informacion
importante.

https://slicejs-docs.vercel.app/

Pagina Web de la Documentacion de “Slice.js”.
Conclusiones

Se logro6 el desarrollo exitoso de un framework basado en componentes, el cual ofrece una arquitectura
y funcionalidades intuitivas para la creacion eficiente de aplicaciones web de diferentes tipos. Una de las
caracteristicas sobresalientes de este framework es su facilidad de implementacion, disefiada para ofrecer una
curva de aprendizaje rapida a los desarrolladores. Esto se logra mediante el uso de tecnologias estandar de la
web, lo que facilita su comprension y uso en comparacion con otros frameworks mas complejos.

Un aspecto crucial del framework es su enfoque en la retrocompatibilidad entre versiones. Esta
caracteristica garantiza que las aplicaciones web desarrolladas con el mismo seguiran siendo funcionales y
compatibles con futuras actualizaciones, evitando asi la obsolescencia y permitiendo a los desarrolladores
mantener sus proyectos de manera sostenible a lo largo del tiempo.

https://slicejs-docs.vercel.app/

111 J.A. Graterol-Bracho, V.J. Kneider-Al Nahi, J.J. Pérez-Zabala CC BY-SA 4.0
Revista Tecnocientifica URU, No. 28 Enero - Junio 2025 (94-111)

Se ha creado una amplia gama de componentes desacoplados que se ofrecen a los desarrolladores
como recursos y ejemplos para la creacion de sus propios componentes. Esta biblioteca de componentes
proporciona una base solida y coherente para el desarrollo de aplicaciones web, permitiendo una mayor
eficiencia y consistencia en el proceso de desarrollo.

Para mejorar atin mas la accesibilidad y la productividad de los desarrolladores, se ha desarrollado
una herramienta complementaria denominada "slicejs-cli". Esta herramienta simplifica y optimiza las tareas
relacionadas con el uso del framework, ofreciendo funciones como la generacion automatica de codigo, la
gestion de dependencias y la automatizacion de tareas repetitivas.

Todos los componentes del framework estan exhaustivamente documentados y disponibles en la
pagina de documentacion del proyecto. Esta documentacion proporciona a los desarrolladores una referencia
completa y detallada sobre cada componente, incluyendo ejemplos de uso, descripciones de propiedades y
métodos, asi como guias paso a paso para su implementacion.

Referencias bibliograficas

[1] A. Mérmol., J. Pérez, “Desarrollo de un marco de trabajo con node.js basado en componentes para
el manejo de solicitudes a objetos de negocio embebidos en el backend”. Revista Tecnocientifica URU, no. 19,
Julio-Diciembre, 2020. [En linea]. Disponible en: http:/uruojs.insiemp.com/ojs/index.php/tc/article/view/549

[2] M. Bjoremo., P. Trnini¢, “Evaluation of web application frameworks”. Thesis in Software
Engineering and Technology, Univ. of Gothenburg, Géteborg, Sweden, 2010. [En linea]. Disponible en: https://
odr.chalmers.se/items/d880ebb9-e1b3-4300-95f0-5¢25d8441870

[3] F. G. Arias, El proyecto de investigacion, Sexta edicion. Editorial Episteme. Caracas, Venezuela,
2012. [En linea]. Disponible en: https://www.researchgate.net/publication/301894369 EL._ PROYECTO_DE
INVESTIGACION_6a_EDICION

[4] E. A. Meyer., E. Weyl, “CSS: The definitive guide: visual presentation for the web”. Fourth edition,
O’Reilly Media, Inc, United States of America, 2018. [En linea]. Disponible en: https:/dokumen.pub/css-the-
definitive-guide-visual-presentation-for-the-web-fourth-edition-9781449393199-1449393195.html

http://uruojs.insiemp.com/ojs/index.php/tc/article/view/549
https://odr.chalmers.se/items/d880ebb9-e1b3-4300-95f0-5c25d8441870
https://odr.chalmers.se/items/d880ebb9-e1b3-4300-95f0-5c25d8441870
https://www.researchgate.net/publication/301894369_EL_PROYECTO_DE_INVESTIGACION_6a_EDICION
https://www.researchgate.net/publication/301894369_EL_PROYECTO_DE_INVESTIGACION_6a_EDICION
https://dokumen.pub/css-the-definitive-guide-visual-presentation-for-the-web-fourth-edition-97814493
https://dokumen.pub/css-the-definitive-guide-visual-presentation-for-the-web-fourth-edition-97814493

	Art 7 Desarrollo de un marco de trabajo basado en componentes para la construcción de clientes web:
	Autores
	Resumen
	Abstract
	Introducción
	Metodología
	Resultados
	Fase 1. Requerimientos:
	Fase 2. Análisis:
	Fase 3. Diseño:
	Fase 4. Implementación:
	Fase 5. Pruebas:
	Fase 6. Mantenimiento y Actualización

	Conclusiones
	Referencias bibliográficas

