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Resumen 
Este artículo está organizado en dos secciones seguidas de una lista de artículos seleccionados de los autores. 

Probablemente este es el primer intento de escribir con todo detalle acerca de los operadores de Boehmians y J. 
Mikusinski junto con las contribuciones de varios matemáticos respecto a Bohemians. La teoría de distribuciones de 
Schwartz fue desarrollada para dar un soporte y fundamentos matematicos comprensibles en la generalización de las 
propiedades de la función delta de Dirac. A partir del trabajo de Sobolev y Schwartz, se hicieron intentos para gene-
ralizar el concepto de distribuciones. Colombeau construyó una nueva algebra diferenciable de funciones generali-
zadas conteniendo el espacio de distribución, en el cual el producto puede ser definido. El concepto de Boehmians, 
la mas reciente generalizacion de la teoria de distribuciones de Schwartz, esta motivada por los operadores regulares 
introducidos y por Boehme. Boehme no adoptó el nombre de Teoria de Bohemians, sino J. Mikusinski y P. Miku-
siński fueron inspirados para desarrolar la Teoria de Boehme, que posiblemente adopto el nombre de Boehmians.

Palabras clave: Calculo operacional, operaciones de Mikusinski, funciones generalizadas, distriubuciones 
de Schwartz, aproximaciones secuencial y funcional, Boehmian, espacio de Beohmian, Boehmian inteprable, boeh-
mian ajustado, ultra Boehmian

Boehmians revisited
Abstract
This article is organized in two sections followed by a list of selected research articles of the authors. 

Presumably this is the first attempt to write every major and minor detials about Boehmians and J. Mikusinski 
operators under one cover together with major contributions of various mathematicians with regard to Boehmians. 
The theory of Schwartz distributions was developed in order to give a concerte and comprehensible mathematical 
foundation for generalzing the properties of Dirac δ – function. Starting from the work of Sobolev and Schwartz, 
attempts were made to generalize the concept of distributions. Colombeau constructed a new differentiable alge-
bra of generalized functions containing the space of distribution, in which product can be defined. The concept of 
Boehmians, one of the youngest generalization of Schwartz theory of distributions, is motivated by the regular 
operators introduced by Boehme. Boehme did not, himself, coined the name, the Boehmian, rather J. Mikusiński 
and P. Mikusiński were inspired to develop the theory of Boehme, which possibly (the conjecture) coined the name 
Boehmian.

Key words: Operational calculus, Mikusiński operators, generalized functions, Schwartz distributions, 
sequential and functional approaches, Boehmian, Boehmian space, integrable Boehmian, tempered Boehmians, 
ultraBoehmian.
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On Operational Calculus and Mikusiński Operators
Theory of operators is an apparent prerequisite to study Boehmians and that brings the concept 

of operational calculus closer to build a better understanding. Plesner [1], while studying the spectral 
theory of linear operators, reinforced the foundation of operational calculus, which was later extended by 
Detkin [2]. In the general theory of linear operators, function-operators play an important role. A rule of 
correspondence established between a set of functions and a class of operators is : To every function )(λF  
of a given set of functions there corresponds a unit operator )(AF  and to the unit function 1=)(λF , 
there corresponds a unit operator E  and to the function λ=)(AF  an operator A . Matter of fact, the 
question relates to the isomorphism between classes of operators and classes of functions, with a unit 
operator corresponding to a unit function, and the operator A  to the function λλ =)(F  , whereas, to the 
sum and product of functions, )()( 21 λλ FF +  and )()( 21 λλ FF , there correspond the sum and product of 
corresponding operators.

The use of Laplace transforms restricted the range of applicability of operational calculus techniques, 
which initiated Jan Mikusiński choose to revert to the original operational view point that did not depend 
on the Laplace transform. Having started from 

 

like Heavisides, he obtained an operational calculus through a straight forward algebraic path. Mikusiński 
begun from the algebra of functions, where the convolution played the role of product. Even Mikusiński’s 
operational calculus underwent remarks of containing deficiencies because of outright rejection of the 
Laplace transform which obstructs the realization of some operational formulae. Raevskii could, later, 
circumvent the difficulty by replacing Mikusiński’s expression by a convenient expression

                                            
.

The nucleus of Mikusiński’s reasoning is the idea of the operators, named after him, the theory of 
which was established during 1950-52. He has represented the genus of fractional number of the type ¦ ¤ g, 
where f  and g  are functions in the limit ∞≤ <0 x . The division )/( gf  is understood as an operation, 
which is the inverse of convolution. If the convolution of two functions f  and h  is denoted by ¦ * h, 
then gfh /= . Polish and German scholars have extended Mikusiński’s perceptions. Mikusiński had 
considered his operators a primitive on an infinite interval. Passage of time in fifties developed the theory 
of operators on a finite interval, based on the preceding theory.

The algebraic treatment of Mikusiński’s operational calculus widened the scope of applications 
of the techniques of which, according to him, “if the class of functions for which the Laplace transform 
exists, then two approaches, one due to Mikusiński and the other the Laplace transform technique, are 
equivalent. However, in the class of functions defined in a finite interval the Laplace or, for that matter, 
any other transformation, does not reduce a transcendental problem to an algebraic one”. Infact, any 
transformation can not translate the convolution

 
,)()(

0
ttt dgtf

t
−∫

with 0=)(tf , in the first half of the given interval to the usual product, since this convolution equals zero 
[cf. Mikusiński [3], Shtokalo [4] for more details].

Unlike Mikusiński’s first theory of operational techniques (1950-52), which is dealt with (briefly) 
in the preceding section, the theory propounded here is algebraic in nature and considered as an alternate 
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approach to the problem of constructing a consistent theory of generalized functions [Mikusiński [5]]. 
It projects the process by which the concept of number is extended from integers to rational numbers 
and provides a natural approach to operational calculus as well as to generalized functions. Although it 
(Mikusiński’s theory) is successful with functions defined on the positive real line and has been extended 
to functions of several variables of such type, yet it is not suitable to deal with functions of unrestricted 
real variable or with functions on an arbitrary region of a space of n  dimensions 2).( ≥n

Mikusiński showed that the set )[0,∞C , the letter C  suggests continuous, with addition and 
multiplication by scalars defined in an obvious way and multiplication of two functions ba,  of the set 
defined by the convolution ba ∗ , forms a commutative ring, which is called the convolution ring. By 
virtue of Titchmarsh’s theorem [Sneddon [6], page 68], we observe that in this convolution ring, division 
is a meaningful operation. Familiarity of this is found in when idea of division of integers is dealt with, 
where division by extending the concept of number from integers to rational numbers in terms of classes 
of equivalent ordered pairs of integers is ensured. In the present context, we consider ordered pairs of 
elements of )[0,∞C  and consider ),( ba  and ),( dc  to be equivalent, if bcda ∗∗ = . The class of 
all ordered pairs of continuous functions, equivalent to ),( ba , is denoted by ba/ , which is called a 
convolution quotient.

In C, the set of all convolution quotient, we can define the operations of addition, multiplication by 
a scalar, and multiplication and show that embedding of )[0,∞C  in C preserves all these operations. That 
allows, therefore, to write (a * f )/ a  as f  for any pair of continuous functions a  and f  and (λa)/a as λ  
for any scalar .λ The unit element e  in C may be written as aa/  and it can be shown that multiplication 
by e  reproduces ¦, which confirms the identification of unit element in C with the Dirac delta function.

The assumption is that the positive real axis is considered (t ≥ 0). Construction of the rational 
numbers from the integers is mandatory to know Mikusiński operators and later, the Boehmians; but 
those who are familiar with this may omit this part. The technicality involves the establishment of the 
equivalence relations for the ordered pair of integers, the separation into equivalence classes, and the 
verification of the independence of choice of representative of an equivalence class, for instance 6/5 
and 30/25 are both representative for the class of quotients which are equivalent to 6/5. Now care must 
be taken to construct the field of quotients, the naming of equivalence classes as rational numbers, and 
embedding of the integers into this new system. We write ba/  (for notations) to represent the elements 
of the new system, where a  and b  are integers. The second element is not always zero. The operations 
of addition and multiplication is simple matter for that cause. We observe that bb/  plays the role of unit 
element in the new system and that 0/b  plays the role of zero. If 0≠a , then the equation (a/b) (x/y) = 
(c/d)  has the solution (bc)/(ad)  and it is unique. All these and little more make available the operational 
calculus in which division is possible. In reference to what is written above, we obtain a model for the 
construction of the convolution quotient from the continuous functions by the construction of the rational 
numbers form the integers. Set of functions, which are continuous for 0≥t  are considered, the addition 
that is taken is pointwise. Since pointwise multiplication does have non-trivial divisors of zero, whereas 
convolution does not have so, the multiplication considered is convolution. We point out that equivalence 
class (mentioned above) is named as Mikusiński operators or as generalized functions.

For {0}≠g , which is the constant function, the convolution quotient gg/  must appear, which leads 
us to a unit element among the generalized functions. It may be noted that the subset of the Mikusiński 
operator satisfies all of the properties of real (complex) numbers as well as the operational properties of 
continuous functions, e.g. addition, multiplication by real (complex) numbers and convolution, which 
are required for multiplication of functions by numbers. As a consequence, within the field of Mikusiński 
operators (generalized functions) we can now consider addition of a number and a function, see Buschman 
[7] for relevant information.
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We should have complied with the regulation of describing the generalized functions or the Schwartz 
theory of distributions, of which the Boehmian is called the youngest generalization, prior talking about 
Boehmians. We have, at the last moment, negated this idea for the simple fact that generalized functions 
have wide familiarity among readers, and moreover, due to paucity of space. However, we give a brief 
note on the generalized functions prior moving to the section(s) only on Boehmians. 

There are some problems encountered in applied mathematics when transform methods are applied 
to analyze physical situations in which impulsive forces or point sources are involved. Introduction 
of Dirac delta function simplifies formal calculations. But the rules for doing the manipulation do not 
follow, in natural way, the methods of classical analysis. This, possibly, led to the advent of the concept 
of generalized functions. Bochner [8] and Sobolev [9] have coined first ideas of such an approach but 
the firm foundation was put by the work of Schwartz [10], culminating in the publication of his treatise. 
Zemanian [11, 12] exhibit excellent study on this concept.

Paul Dirac [13] introduced, for the first time, in quantum mechanical studies, the delta function
which possesses the property                                                        . It was soon pointed out
by mathematicians that from purely mathematical point of view this definition is meaningless. It was, of 
course, even clear to Dirac himself that the δ  - function is not a function in the classical sense and, what 
is important, it operates as an operator (more precisely as a functional) that relates, via above formula to 
each continuous function ϕ  a number (0)ϕ , which is its value at a point O.

 The simplest attempt at such a generalization,i.e., to generalize the entire concept of a function, is 
due to Mikusiński [14] which is developed by Temple [15, 16]. This method defines generalized functions 
as classes of equivalent fundamental sequences of continuous functions, which is similar to that used when 
real numbers are introduced with the help of fundamental sequences of rational numbers. References for 
further reading, among many others, are Beltrami and Wohlers [17], Bremermann [18], Carmichael and 
Pilipovic [19], Debnath [20], Debnath and Mikusiński [21], Erdélyi [22], Friedmann [23], Gel’fand and 
Shilov [24, 25, 26, 27, 4 vols.], Hoskins [28], Korevarr [29], Mikusiński and Sirorski [30], Pandey [31], 
Zemanian [11,12]. Distributions are generalization of locally integrable functions on the real line, or more 
generally a generalization of functions which are defined on an arbitrary open set in the Euclidean space. 
The mathematical theory called the theory of distributions, which enabled the introduction of the Dirac 
delta function without any logical restrictions, was coined in forties of the preceding century. As once the 
theory of real number was generalized, this theory generalized the notion of function.

The two most important approaches in theory and practice are: functional approach advented 
by Soboleff [9] and Schwartz [32] where distributions are defined as linear functionals continuous in 
linear spaces; sequential approach given by Mikusiński [14] , where distributions are defined as class 
of equivalent sequences. It may be noted that among important, in practice operations, are regular and 
non-regular operations. For example, the two argument operations of product ψϕψϕ ⋅=),(A  and 
the convolution ψϕψϕ ∗=),(A  are not regular operations and, therefore, they cannot be defined for 
arbitrary distributions. Mikusiński [33, 34] devised a general method to define irregular operations on 
distributions (see also Antosik et al. [35]).One may also refer to Mikusiński [36], Kaminski [37], Antosik 
and Ligeza [38] among others.

 The alternate approach is to study distributions as limit of sequences of functions. Logical 
construction of such limits is based on the Cantor’s concept of equivalence classes. To each distribution in 
the functional approach there corresponds one distribution in the sequential approach, and conversely. The 
approach is to establish, first, the usual property of the distribution as a derivative of continuous function 
and then develop the remaining on the basis of both, as a limit of continuous functions and as a derivative 
of a function of a distribution [cf. Lojasiewicz [39] and Zielenzny [40]].

Revisión de la teoría de Boehmians
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The fundamental term to form the basis of the sequential approach is the identification principle. 
Oriented segments x  and y  are said to be equivalent if they are parallel and have the same length and 
orientation, we write yx : , which has the properties, (i) xx ~  (reflexive), (ii) if yx ~ , then xy ~  
(symmetric) and (iii) if yx ~ , zy ~ , then zx ~  (transitive). By means of equivalence relation we 
obtain a decomposition of the set of all oriented segments into disjoint classes such that the segments 
in the same class are equivalent and in different classes they are not, by virtue of Cantor’s definition of 
real numbers. Rational numbers are the basic concepts for understanding Cantor’s theory, the functions 
continuous in A < x < B (– ∞ ≤ A < B ≤ ∞)  are the starting point for the theory of sequential approach. A 
sequence {Fn(x)} of continuous functions )<<( BxA  is called a fundamental sequence if there exists 
a sequence {Fn(x)} and an integer 0≥k  such that )(=)( xfF n

k
n  and the sequence {Fn(x)} converges 

almost uniformly. 

If there exists sequences {Fn(x)} and {Gn(x)} and an integer 0≥k  such that

(i) )(=)( xfF n
k

n  and )(=)( xgG n
k

n

(ii) )()( xGxF nn ⇐⇒  ,

then the fundamental sequences {fn(x)} and {gn(x)} are said to be equivalent, we write {fn(x)} ~ {gn(x)}. In 
other words, fundamental sequences {fn(x)} and {gn(x)} are equivalent if and only if the sequence given 
by f 1(x), g1(x), f2(x), g2(x), ... is fundamental and moreover, in that case there exists an integer 0≥k  
and the continuous functions Fn(x) and )(xGn  such that ),(=)( xfF n

k
n  )(=)( xgG n

k
n  and the sequence 

F1(x), G1(x), F2(x), G2(x), ...  converges uniformly and, consequently, (i) and (ii) hold true. By virtue 
of conditions (i) - (iii) (i.e. reflexive, symmetric and transitive as dfined above), the set of all fundamental 
sequences BxAxfn <<)},({ , is partitioned into equivalence classes without common elements such 
that two fundamental sequences are in the same equivalence class if and only if they are equivalent, which 
(the equivalence classes) will be called distribution in BxA << . The notion of the distributions is, thus, 
obtained, from the identification of equivalent fundamental sequences, those distributions are denoted by 

)].([ xfn
Denoting by 0, is the zero distribution, which is the distribution coinciding with the function identically 

equal to zero, we mean )(=)(0 xfxf+  and 0=)(0 xf⋅ . The symbol 0 has two interpretations, for 
the former it means number zero and for the latter, it is zero distribution, Loonker [41] and Krystyna [42]. 
A formal definition of distribution was due to Mikusiński [43], based on which Mikusiński and Sikorski 
[30, 44] developed sequential theory of distributions and later Mikusiński and Antosik [35] wrote the 
monograph. Mikusiński’s definition of distributions in sequential sense is analogue to the definition of real 
numbers in the Cantor’s theory. 

The operations, addition of smooth functions, difference of smooth functions, multiplication of a 
smooth function by a fixed number λ;λφ , translation of the argument of a smooth function )( hx +ϕ ,
derivation of a smooth function of a fixed order m ; •,)(mϕ  multiplication of a smooth function by a smooth 
fixed function ω; ωφ, substitution of a fixed smooth function 0≠ω , product of a smooth function with 
separated variables; •),()( 21 yx ϕϕ  convolution of a smooth function with a fixed function ω from the 
space D (of smooth functions whose supports are bounded); (¦ ● ω)(x) = ∫Rφ(x – t)ω(t)dt, inner product 
of a smooth function with a fixed function form the space ∆; (φ, ω) = ∫Rφ(x)ω(x)dx, are all regular. An 
advantage of the sequential approach to the theory of distributions is the simplified way of extending to 
distributions many operations which are regular. Moreover, we know that every distribution is locally a 
distributional derivative of a finite order of a continuous function. It is also a natural consequence that the 
sequence )( nf δ•  is distributionally convergent to f (i.e., fundamental for f ) for an arbitrary distribution 

,1R∈f  where )( nδ  is the delta sequence.

Jan Mikusiński also explored the theory of integration. His definition of the Lebesgue integral 
is simple and possesses clean geometrical meaning, which can be formulated for functions defined in

P. K. Banerji and Deshna Loonker
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kR  with values in a Banach space which yields a uniform approach to the Lebesgue and the Bochner 
integrals (both have a great cohesiveness to Boehmians). The function Xf k →R:  ):( 1RR →kf , 
where X  is a Banach space, is called Bochner (Lebesgue) integrable if there exists a sequence of interval
                                                            in kR  and a sequence Nnn ∈)(λ  of elements of X  such that

∞
∞

∑ <)(vol
1=

nn
n

Iλ

and

                                               , ,)(=)(
1=

xIxf nn
n

χλ
∞

∑

at those points x  at which the series is absolutely convergent, where lχ  denotes the characteristic function 
of an interval I.

Bochner (Lebesgue) integral of a function satisfying above conditions, is defined by

,)(vol=
1=

nn
n

If λ
∞

∑∫ ,

which is equivalent to the classical definitions of Bochner and Lebesgue integrals, see Mikusiński [45].
 
Introducing Boehmians
That we are writing in this section is one of the youngest generalizations of functions and more 

particularly that of Schwartz theory of Distributions, devised by Thomas Kalman Boehme, descendant 
of Prof. Arthur Erdélyi, who earned his degree of Ph.D. from California Institute of Technology in 1960. 
Instead of writing on Boehmians and the Boehmian space straightway, we desire to mention, very briefly, 
some relevant and fruitful thoughts given in the Thesis of Boehme [46]. In his thesis, the finite part of 
divergent convolution integrals is studied and explored by utilizing Mikusiński’s operational calculus 
(possibly that is the coining of the idea for Boehmians). In Chapters 2 and 3, the concept of an analytic 
operator function is utilized. An operator function )(zf  is said to be an analytic operator function on 
an open region S  of the complex plane if there is an operator 0≠a  such that af (z) = {af (z,t)} has a 
partial derivative with respect to z , which is continuous on S × 0, ∞). Let )(zf  be an analytic operator 
function and {f (z,t)} is a continuous function on S × [0, ∞). Suppose also that for each 0>t , ),( tzf  is an 
analytic function on z  on larger region SS ⊃∗ . Let )(zf ∗  is an analytic operator function on ∗S  such 
that )(=)( zfzf ∗  on S . Then the operator function )(zf ∗  is called [ FP  f (z,t)} on .∗S

In fact, the use of the finite parts of divergent integrals started with Cauchy who used, what he called 
“intégrale extraordinaire”, to give a sense to the gamma function for negative values of the argument. This 
notion has been used and extended by various authors, among them are Schwartz [10] and Lighthill [47] 
who have applied the theory of distributions to extend the idea of the finite part of divergent integrals. 
Butzer [48] used the Mikusiński’s operational calculus to study the finite part of the divergent convolution 
integrals.

For certain functions {f (z,t)}, [cf. Boehme [46, Chap.3] ], the finite part of the convolution integral
has  been  defined  by  Hadamard [49]  and  Bureau [50]  even  though  for  some  values  

of z, the function {f (z,t)} is not a Lebesgue integrable function.

The idea of construction of Boehmians is coined from the concept of regular operators introduced 
by Boehme [51], which form a subalgebra of the field of Mikusiński operators and they, thus, include 
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only such functions whose support is bounded from left. Mikusiński and Mikusiński [52] attempted to 
generalize the notion of regular operators so as to include all continuous functions and to formulate a 
general construction of Boehmians. Strictly speaking, the space of Boehmians contains all regular 
operators, all distributions and some objects which are neither operators nor distributions. Mikusiński 
[53] introduced and studied the convergence of Boehmians, where the space furnished with the induced 
convergence, appears to be a complete quasi-normed space. For every ring without zero divisors, there 
exists the corresponding field of quotients.

The space +C  of all continuous functions on the real line R  with supports bounded from left forms 
a ring without zero divisors with respect to the convolution. The field of quotients for the space +C  is 
called (usually ) the field of Mikusiński operators, which is when replaced by the space of all continuous 
functions C , the construction of the field of quotients becomes impossible due to the presence of zero 
divisors in C . The construction of Boehmians is similar to that of the field of quotients and in some cases, 
it is interesting to note, it gives just the field of quotients. On the other hand, the construction of Boehmian 
is possible where there are zero divisors, such as the space C .

Let G  be a linear space and S  be the subspace of G . Let to each pair of elements Gf ∈  and 
S∈ϕ , the product gf ∗  is assigned (∗  is a map from SG ×  to G ) such that

(i) if S∈ψϕ, , then S∈∗ψϕ  and ϕψψϕ ∗∗ =

(ii) if SGf ∈∈ ψϕ,, , then )(=)( ψϕψϕ ∗∗∗∗ ff

(iii) if SGgf ∈∈ ϕ,, , and R∈λ  , then

 ϕϕϕ ∗+∗∗+ gfgf =)(

and (λ  λϕ (=)∗f  ϕ∗)f  .

Let ∆  be a family of sequences of elements from S  such that

(iv) if ∆∈∈ )(,, nGgf δ  and nn gf δδ ∗∗ =  )1,2,=( n , then gf =  .

(v) if ,)(),( ∆∈nn δϕ  then ∆∈∗ )( nn δϕ .

.,,= Njiff ijji ∈∀∗∗ ϕϕ

Two quotients of sequences mmf ϕ/  and nng ψ/  are called equivalent, denoted by mmf ϕ/  ~ nng ψ/ ,
if

,,,= Nnmgf mnnm ∈∀∗∗ ϕψ

which splits A  into equivalence classes, of which the class containing nnf ϕ/  is denoted by ]./[ nnf ϕ  
These equivalence classes are called Boehmians and the space of them is denoted by ).,(= ∆GBB  
Following illustrates the behaviour of Boehmians for the algebraic properties.

P. K. Banerji and Deshna Loonker
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(i) The sum of two Boehmians and the multiplication by a scalar are defined by

and
.,]/[=]/ Cff nnnn ∈aϕaϕa .

(ii) The operation ∗  and the differentiation are, respectively, defined by

and

In particular, if Bf nn ∈]/[ ϕ  and S∈δ  is any fixed element, then the product ∗  is defined by

which is said to be in B(G,∆).

More often G, which is also the quasi-normed space, is found to be equipped with the notion of 
convergence. The intrinsic relationship between this notion of convergence and the product ∗  are given 
by

(i) if ffn →  as ∞→n  in G  and S∈ϕ  be any fixed element, then ff nn →∗ϕ  ϕ∗  as ∞→n  
in G .

(ii) if ffn →  as ∞→n  in G  and ,)( ∆∈nδ  then ff nn →∗δ  as ∞→n  in G .

In the Boehmian space B  the δ - and ∆ - convergences are stated as:

(i) A sequence of Boehmians (xn) in the Boehmian space B is said to be δ - convergent to 
a Boehmian x in B, which is denoted by xxn

δ
→ if there exists a delta sequence )( nδ  such that 

NnGxx nnn ∈∀∈∗∗ ,)(),( δδ  and )()( kkn xx δδ ∗→∗  as ∞→n  in G , .Nk ∈∀

(ii) A sequence of Boehmians )( nx  in B  is said to be ∆ - convergent to a Boehmian x  in B , 
denoted by xxn

δ
→  if there exists a delta sequence ∆∈)( nδ  such that NnGxx nn ∈∀∈∗− ,)( δ  and 

0)( →∗− nn xx δ  as ∞→n  in .G

Suppose U  is an open set. Then a Boehmian Bx ∈  is said to vanish on U  if for each compact 
set UK ⊆  there exists a representative nnf ϕ/  of x  such that 0=nf  on K  for each Nn∈ . Thus, the 
support of a Boehmian x  is defined as the complement of the largest open set on which x  vanishes. In 
what follows is an example of a Boehmian space in which the distributions 'D  can be imbedded.

Consider )(= ∞CG , which is equipped with the topology of uniform convergence on compact set 
S = D(R). Let ∆  be the class of sequences from D, which satisfies the conditions ∫ δn(x)xd = 1, ∫|δn(x)| ≤ 
M and supp 0→nδ  as ∞→n . For SGf ∈∈ ϕ, , the convolution ∗  is defined by (¦ * φ) = ∫¦(x – t)
φ(t)dt. Indeed, ∗  defines a map from SG ×  to G  and a member of ∆  satisfies the conditions

(i) if ∆∈∈ )(,, nG δba  and ),(=)( nn δbδa ∗∗  for each Nn ∈ , then ba =  in G , and

(ii) if ,)(),( ∆∈nn ϕδ  then ∆∈∗ )( nn ϕδ ,

and thereby generates a Boehmian space, which is B = B(C ∞ (P ), ∆), members of which are called ∞C
-Boehmians. In another case, consider G  to be set of all locally integrable functions on R  and identify 
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two such functions, whenever they are equal almost everywhere with respect to the usual Lebesgue 
measure on  , the topology of which is taken to be the semi-norm topology, generated by

.1,2,...=,=)( ndffp
n

nn λ∫−

Also consider )(= RDS  and ∆  is the class of sequence from D (discussed in preceding sections). 
Then a corresponding Boehmian space ),(= ∆GBB  is obtained, called the space of locally (or local) 
Boehmians. )(R'D  can be imbedded continuously in both the above mentioned Boehmian spaces in the 
sense that the map B' ∈D , given by u → (u * δn) / δn], defines a one-to-one function in such a way that 

uum →  in 'D  implies xm → x in B, where x = [(um * δn) / δn] and x = [(u * δn) / δn].

Mikusiński [54] has constructed a Boehmian space 
1LB  consisting of integrable Boehmian, on 

which the Fourier transform is defined as a continuous function. The Boehmian space 
1LB  is constructed 

due to G = L(R) and the class ∆ , which satisfies the conditions

where ∗  is the convolution, except for the use of ordinary Lebesgue measure, in place of normalized 
Lebesgue measure. Mikusiński [54] has also shown that whenever 1

]/[ Lnn Bf ∈ϕ ,

converges uniformly on each compact set in R. Then the Fourier transform of an integrable Boehmian 
]/[ nnf ϕ  is defined as the limit of }{ nf

∧

 in the space of continuous functions on R. Mikusiński [55, 
56] suggested an extension of space of the Fourier transformable Boehmian containing the tempered 
distribution 'S . The space of tempered Boehmians, which is denoted by TB , is constructed by taking 

TG = , which is the space of slowly increasing functions on R. Note also that every distributions is the 
Fourier transform of a tempered Boehmian.

In what follow is the published research work of authors (of this article) related to Boehmians. 
Looking into both aspects the paucity of space and degree of tolerance of the reader, only the abstract of 
each paper is given, without destroying the inquisitive thirst of the reader.

1. On the Mellin transform of tempered Boehmians, U.P.B. Sci. Bull. Series A, 62 (4)(2000), 39-48.

Two theorems have been proved on the characteristic theme, that the Mellin transform of tempered 
Boehmian is a Schwartz distribution. The Mellin transform  ¦̂     (is) of slowly increasing function f  is the 
distribution, given by

    
.
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The Mellin transform 
∧

F  of tempered Boehmian ]/[= nnfF ϕ  is the limit of }{ nf
∧

 in 'D  (the space 
of distributions). Statement of one of the two theorems proved is, If Inn Bf ∈]/[ ϕ , then the sequence }{ nf

∧

 
converges in .'D Moreover, if ]/[]/[ nnnn gf gϕ =  IB∈ , then the sequences }{ nf

∧
 and }{ ng

∧
 have the 

same limit for the Mellin transform of tempered Boehmians.

2. Wavelet transform of the tempered Boehmians, Hadronic J. Suppl. 18 (2003), 403-410.

This paper deals with the extension of tempered distribution to a class of Boehmians known as 
tempered Boehmians and defined it on the wavelet transform. Central theme being proving that the wavelet 
transform of a tempered Boehmian is a distribution, i.e., we have characterized the distributions of the 
transformable Boehmians. The inversion theorem is also proved. In proving the theorems, continuous 
Gabor transform (or windowed Fourier transform) of f  is used [cf. Debnath [57]] and then the Parseval 
formula for the Gabor transform is invoked.

3. Wavelet transform for integrable Boehmians (with Lokenath Debnath), J. Math. Anal. Appl. 296 
(2) (2004), 473 - 478 .

By applications of continuous wavelet transform and invoking Burzyk’s conjecture, the wavelet 
transform for integrable Boehmians is obtained. Inversion theorem is also proved. Wavelet transform is 
[cf. Koorwinder [58]]

where     is   a   set   of   real   numbers,   d=1,  

4. Ultradistribution and ultra-Boehmian of wavelet transform (with S. L. Kalla), Hadronic Journal, 
29 (2006), 485-496.

We have investigated certain testing function space for the wavelet transform. Also obtained are 
ultradistribution and ultra-Boehmians for the wavelet transform. Section 2 deals with the testing function 
space Z  of the wavelet transform, Section 3, based upon the statement (Theorem proved there) that, the 
space of all ultradistributions 'Z  contains the space 'S  of tempered distributions, establishes the result 
for ultradistrbution of wavelet transform. While extending the wavelet transform to the ultra-Boehmian 
space in Section 4, it is proved that, if ,]/[ znnf bϕ ∈  then the wavelet transform converges in 'D , and 
further, if ]/[=]/[ nnnn gf gϕ  belongs to zb , then the wavelet transform converges to the same limit to 
which do ultra-Boehmians.

5. The Cauchy representation of integrable and tempered Boehmians, Kyungpook Math. J. 47 
(2007), 481-493.

The paper proves results based on the concept that, a relation between the Cauchy representation 
of the Fourier transform of the functions in 2L -space and a decomposition of the Fourier transform into 
two parts, each of which gives an analytic function in the half plane, define that the decomposed transform 
is convergent for classes of functions larger than those in 2L -space .Section 2 investigates the Cauchy 
representation of integrable Boehmians by invoking the relation between the Cauchy representation and 
the Fourier transform and using properties of the former in 1L -space. In Section 3, we have investigated 
the Cauchy representation of tempered Boehmians. Inversion formulae, for results in Section 2 and 3, are 
also proved. The conclusive remark of the paper is, the Cauchy representation of an integrable Boehmian 
and the tempered Boehmian is a distribution.
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6. Hilbert Transform for Lacunary Boehmians, Global J. Math. Anal. 1 (1-2)(2007), 85-90.

A series of the form Σ an exp(iλnt), where {λn} is a sequence of positive integers for which
inf (λn+1/λn) > 1 and λ–n = –λn for all n ∈ N, is called a lacunary series. Nemzer [59] has investigated the 
space of the lacunary Boehmians, which has lacunary Fourier series representation. In the present paper 
we study the Hilbert transform for the lacunary Boehmians. A sequence of positive integers ∞

1=}{ nnλ  is 
called Hadamard-lacuanry or simply lacunary if there exists a constant 1>q  such that nn qλλ >1+  for 
all .n

7. Mellin transform of fractional integrals for integrable Boehmians, J. Indian Math. Soc. 74 (1-2)
(2007), 83-89.

The Riemann-Liouvelle fractional integrals, [Samko et al. [60]], for a function ),()( 1 baLx ∈ϕ are 
extended from finite interval ],[ ba  to half axis [Samko et al. [60], page 94] by the formula

the Mellin transform of which is [cf. Podlubny [61], page 115]

 

8. Generalized Stieltjes transform and its fractional integrals for integrable Boehmians, Austral. J. 
Math. Anal. Appl. 5 (1) (2008), 1-8

Using the distributional Stieljes transform and the Parseval relation for the generalized stieltjes 
transform, in Section 2, a lemma is proved which is further used in proving an important theorem. Section 
3 exhibits use of fractional integral operators for integrable Boehmians.Stieltjes transform of fractional 
integral opeartor is investigated for integrable Boehmians which shows that the Stieltjes transform of 
fractional integral operator for an integrable Boehmian =F  ]/[ nnf δ  is defined as the limit of )( 0 np fI a

+G
, which is the space of continuous functions on .R

9. Fourier sine (cosine) transform for ultradistributions and their extensions of tempered and ultra-
Boehmian spaces (with S. K. Q. Al-Omari and S. L. Kalla), Integral Transforms Spl. Fuct. 19 (6) (2008), 
453-462.

This paper has regarded ultradistributions for the Fourier sine (cosine) transform on certain dual 
testing space and extension of them on tempered and ultra-Boehmian spaces.

We conclude with a remark that for explanations of notations used and detailed calculations of the 
results therein, one may refer to original papers, mentioned above. It may not be out of place to mention 
that some of our work, which are not included above, are viz. Banerji and Loonker [62], Banerji [63], 
Loonker and Banerji [64, 65, 66, 67] and Banerji and Loonker [68] , Singh et al. [69], Loonker and Banerji 
[70], Singh and Banerji [71, 72], Loonker and Banerji [73], Singh et al. [74]. 
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